Skip to main content

In Vitro Reconstitution of In Vivo-Like Nucleosome Positioning on Yeast DNA

  • Protocol
  • First Online:
Chromatin Remodeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 833))

Abstract

Genome-wide nucleosome mapping in vivo highlighted the extensive degree of well-defined nucleosome positioning. Such positioned nucleosomes, especially in promoter regions, control access to DNA and constitute an important level of genome regulation. However, the molecular mechanisms that lead to nucleosome positioning are far from understood. In order to dissect this mechanism in detail with biochemical tools, an in vitro system is necessary that can generate proper nucleosome positioning de novo. We present a protocol that allows the assembly of nucleosomes with very much in vivo-like positioning on budding yeast DNA, either of single loci or of the whole-genome. Our method combines salt gradient dialysis and incubation with yeast extract in the presence of ATP. It provides an invaluable tool for the study of nucleosome positioning mechanisms, and can be used to assess the relative stability of properly positioned nucleosomes. It may also generate more physiological templates for in vitro studies of, e.g., nucleosome remodeling or transcription through chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Radman-Livaja, M. and Rando, O. J. (2010) Nucleosome positioning: how is it established, and why does it matter? Dev. Biol. 339, 258–266.

    Article  PubMed  CAS  Google Scholar 

  2. Segal, E. and Widom, J. (2009) What controls nucleosome positions? Trends Genet. 25, 335–343.

    Article  PubMed  CAS  Google Scholar 

  3. Jiang, C. and Pugh, B. F. (2009) Nucleosome positioning and gene regulation: advances through genomics Nat. Rev. Genet. 10, 161–172.

    Article  CAS  Google Scholar 

  4. Yuan, G. C., Liu, Y. J., Dion, M. F., Slack, M. D., Wu, L. F., Altschuler, S. J., and Rando, O. J. (2005) Genome-scale identification of nucleosome positions in S. cerevisiae Science 309, 626–630.

    Google Scholar 

  5. Mavrich, T. N., Jiang, C., Ioshikhes, I. P., Li, X., Venters, B. J., Zanton, S. J., Tomsho, L. P., Qi, J., Glaser, R. L., Schuster, S. C., Gilmour, D. S., Albert, I., and Pugh, B. F. (2008) Nucleosome organization in the Drosophila genome Nature 453, 358–362.

    CAS  Google Scholar 

  6. Valouev, A., Ichikawa, J., Tonthat, T., Stuart, J., Ranade, S., Peckham, H., Zeng, K., Malek, J. A., Costa, G., McKernan, K., Sidow, A., Fire, A., and Johnson, S. M. (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning Genome Res. 18, 1051–1063.

    Article  PubMed  CAS  Google Scholar 

  7. Schones, D. E., Cui, K., Cuddapah, S., Roh, T. Y., Barski, A., Wang, Z., Wei, G., and Zhao, K. (2008) Dynamic regulation of nucleosome positioning in the human genome Cell 132, 887–898.

    CAS  Google Scholar 

  8. Lee, W., Tillo, D., Bray, N., Morse, R. H., Davis, R. W., Hughes, T. R., and Nislow, C. (2007) A high-resolution atlas of nucleosome occupancy in yeast Nat. Genet. 39, 1235–1244.

    CAS  Google Scholar 

  9. Lantermann, A. B., Straub, T., Stralfors, A., Yuan, G. C., Ekwall, K., and Korber, P. (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae Nat. Struct. Mol. Biol. 17, 251–257.

    Article  CAS  Google Scholar 

  10. Stein, A. (1989) Reconstitution of chromatin from purified components Methods Enzymol. 170, 585–603.

    CAS  Google Scholar 

  11. Rhodes, D. and Laskey, R. A. (1989) Assembly of nucleosomes and chromatin in vitro Methods Enzymol. 170, 575–585.

    CAS  Google Scholar 

  12. Luger, K., Rechsteiner, T. J., and Richmond, T. J. (1999) Expression and purification of recombinant histones and nucleosome reconstitution Methods Mol. Biol. 119, 1–16.

    CAS  Google Scholar 

  13. Widom, J. (2001) Role of DNA sequence in nucleosome stability and dynamics Q. Rev. Biophys. 34, 269–324.

    Article  CAS  Google Scholar 

  14. Schnitzler, G. R. (2008) Control of nucleosome positions by DNA sequence and remodeling machines Cell Biochem. Biophys. 51, 67–80.

    CAS  Google Scholar 

  15. Kaplan, N., Moore, I. K., Fondufe-Mittendorf, Y., Gossett, A. J., Tillo, D., Field, Y., LeProust, E. M., Hughes, T. R., Lieb, J. D., Widom, J., and Segal, E. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome Nature 458, 362–366.

    CAS  Google Scholar 

  16. Zhang, Y., Moqtaderi, Z., Rattner, B. P., Euskirchen, G., Snyder, M., Kadonaga, J. T., Liu, X. S., and Struhl, K. (2009) Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo Nat. Struct. Mol. Biol. 16, 847–852.

    Article  CAS  Google Scholar 

  17. Pugh, B. F. (2010) A preoccupied position on nucleosomes Nat. Struct. Mol. Biol. 17, 923.

    Article  CAS  Google Scholar 

  18. Kaplan, N., Hughes, T. R., Lieb, J. D., Widom, J., and Segal, E. (2010) Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology Genome Biol. 11, 140.

    CAS  Google Scholar 

  19. Simpson, R. T. and Stafford, D. W. (1983) Structural features of a phased nucleosome core particle Proc. Natl. Acad. Sci. USA 80, 51–55.

    Article  CAS  Google Scholar 

  20. Neubauer, B., Linxweiler, W., and Hörz, W. (1986) DNA engineering shows that nucleosome phasing on the African green monkey alpha-satellite is the result of multiple additive histone-DNA interactions J. Mol. Biol. 190, 639–645.

    Article  CAS  Google Scholar 

  21. Lowary, P. T. and Widom, J. (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning J. Mol. Biol. 276, 19–42.

    Article  CAS  Google Scholar 

  22. Lusser, A. and Kadonaga, J. T. (2004) Strategies for the reconstitution of chromatin Nat. Methods 1, 19–26.

    CAS  Google Scholar 

  23. Pazin, M. J., Bhargava, P., Geiduschek, E. P., and Kadonaga, J. T. (1997) Nucleosome mobility and the maintenance of nucleosome positioning. Science 276, 809–812.

    Article  PubMed  CAS  Google Scholar 

  24. Langst, G., Becker, P. B., and Grummt, I. (1998) TTF-I determines the chromatin architecture of the active rDNA promoter EMBO J. 17, 3135–3145.

    CAS  Google Scholar 

  25. Robinson, K. M. and Schultz, M. C. (2003) Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p Mol. Cell. Biol. 23, 7937–7946.

    CAS  Google Scholar 

  26. Schultz, M. C. (1999) Chromatin assembly in yeast cell-free extracts Methods 17, 161–172.

    CAS  Google Scholar 

  27. Schultz, M. C., Hockman, D. J., Harkness, T. A., Garinther, W. I., and Altheim, B. A. (1997) Chromatin assembly in a yeast whole-cell extract Proc. Natl. Acad. Sci. USA 94, 9034–9039.

    Article  CAS  Google Scholar 

  28. Hertel, C. B., Längst, G., Hörz, W., and Korber, P. (2005) Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening Mol. Cell. Biol. 25, 10755–10767.

    CAS  Google Scholar 

  29. Wippo, C. J., Krstulovic, B. S., Ertel, F., Musladin, S., Blaschke, D., Sturzl, S., Yuan, G. C., Hörz, W., Korber, P., and Barbaric, S. (2009) Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability Mol. Cell. Biol. 29, 2960–2981.

    CAS  Google Scholar 

  30. Zhang, Z., Wippo, C. J., Wal, M., Ward, E., Korber, P., and Pugh, B. F. (2011) A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980.

    Google Scholar 

  31. Ertel, F., Dirac-Svejstrup, A. B., Hertel, C. B., Blaschke, D., Svejstrup, J. Q., and Korber, P. (2010) In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo Mol. Cell. Biol. 30, 4060–4076.

    CAS  Google Scholar 

  32. Patterton, H. G. and von Holt, C. (1993) Negative supercoiling and nucleosome cores. I. The effect of negative supercoiling on the efficiency of nucleosome core formation in vitro J. Mol. Biol. 229, 623–636.

    CAS  Google Scholar 

  33. Simon, R. H. and Felsenfeld, G. (1979) A new procedure for purifying histone pairs H2A  +  H2B and H3  +  H4 from chromatin using hydroxylapatite Nucleic Acids Res. 6, 689–696.

    Article  PubMed  CAS  Google Scholar 

  34. Svaren, J., Venter, U., and Hörz, W. (1995) In vivo analysis of nucleosome structure and transcription factor binding in Saccharomyces cerevisiae Methods in Mol. Genet. 6, 153–167.

    CAS  Google Scholar 

  35. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (Edition) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  36. Wippo, C. J., Israel, L., Watanabe, S., Hochheimer, A., Peterson, C. L., and Korber, P. (2011) The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes EMBO J. 30, 1277–1288.

    Google Scholar 

  37. Germond, J. E., Hirt, B., Oudet, P., Gross-Bellark, M., and Chambon, P. (1975) Folding of the DNA double helix in chromatin-like structures from simian virus 40 Proc. Natl. Acad. Sci. USA 72, 1843–1847.

    Article  CAS  Google Scholar 

  38. Pfaffle, P. and Jackson, V. (1990) Studies on rates of nucleosome formation with DNA under stress J. Biol. Chem. 265, 16821–16829.

    CAS  Google Scholar 

  39. Nightingale, K. P. and Becker, P. B. (1998) Structural and functional analysis of chromatin assembled from defined histones Methods A Companion To Methods In Enzymology 15, 343–353.

    CAS  Google Scholar 

  40. Huynh, V. A., Robinson, P. J., and Rhodes, D. (2005) A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone J. Mol. Biol. 345, 957–968.

    Article  CAS  Google Scholar 

  41. Korber, P. and Hörz, W. (2004) In vitro assembly of the characteristic chromatin organization at the yeast PHO5 promoter by a replication-independent extract system J. Biol. Chem. 279, 35113–35120.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is funded by the German Research Community (DFG, grant within the SFB/Transregio 5) and through the 6th Framework Programme of the European Community (NET grant within the Network of Excellence The Epigenome). We thank Nils Krietenstein for critical reading of the manuscript. This paper is dedicated to the memory of Eduard Buchner, who founded biochemistry by demonstrating the power of yeast extracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Korber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wippo, C.J., Korber, P. (2012). In Vitro Reconstitution of In Vivo-Like Nucleosome Positioning on Yeast DNA. In: Morse, R. (eds) Chromatin Remodeling. Methods in Molecular Biology, vol 833. Humana Press. https://doi.org/10.1007/978-1-61779-477-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-477-3_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-476-6

  • Online ISBN: 978-1-61779-477-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics