Skip to main content

High-Throughput Yeast Two-Hybrid Screening

  • Protocol
  • First Online:
Two Hybrid Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 812))

Abstract

Charting the interactions among proteins is essential for understanding biological processes. While a number of complementary technologies for detecting protein interactions are available, the yeast two-hybrid system is one of the few that have been successfully scaled up. Two-hybrid screens have been used to construct extensive protein interaction maps for humans and several model organisms, and these maps have proven invaluable for studies on a variety of biological systems. These maps, however, have not come close to covering all proteins or interactions detectable by yeast two-hybrid. This is due in part to the difficulty of using library screening methods to sample all possible binary combinations of proteins. Ideally, every binary pair of proteins would be tested individually to ensure that every detectable interaction is identified. For organisms with large proteomes, however, this is not economically feasible and instead efficient pooling schemes must be implemented. The high-throughput two-hybrid screening methods presented here are designed to efficiently maximize coverage for selected sets of proteins or entire proteomes.

We present two high-throughput screening protocols. Both methods are designed to identify interactors for any number of bait proteins expressed as DNA-binding domain (BD) fusions. The choice of which protocol to use depends largely on the nature of the available library of proteins fused to an activation domain (AD). The first protocol is appropriate for screening a library of AD clones, such as a cDNA library, a domain library, or a large pool of AD clones. By contrast, the second protocol is appropriate for screening a large array of individual sequence-verified AD clones. This protocol screens small pools of AD clones from the array in a two-phase scheme. Although the methods presented were developed using the LexA version of the yeast two-hybrid system, we include notes as appropriate to accommodate users of other versions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fields, S. (2005) High-throughput two-hybrid analysis. The promise and the peril, FEBS J 272, 5391–5399.

    Google Scholar 

  2. Parrish, J. R., Yu, J., Liu, G., Hines, J. A., Chan, J. E., Mangiola, B. A., Zhang, H., Pacifico, S., Fotouhi, F., DiRita, V. J., Ideker, T., Andrews, P., and Finley, R. L., Jr. (2007) A proteome-wide protein interaction map for Campylobacter jejuni, Genome Biol 8, R130.

    Google Scholar 

  3. Bendixen, C., Gangloff, S., and Rothstein, R. (1994) A yeast mating-selection scheme for detection of protein-protein interactions, Nucleic Acids Res 22, 1778–1779.

    Google Scholar 

  4. Finley, R. L., Jr., and Brent, R. (1994) Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators, Proc Natl Acad Sci USA 91, 12980–12984.

    Google Scholar 

  5. Kolonin, M. G., Zhong, J., and Finley, R. L. (2000) Interaction mating methods in two-hybrid systems, Methods Enzymol 328, 26–46.

    Google Scholar 

  6. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome, Proc Natl Acad Sci USA 98, 4569–4574.

    Google Scholar 

  7. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S., and Sakaki, Y. (2000) Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins, Proc Natl Acad Sci USA 97, 1143–1147.

    Google Scholar 

  8. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J. M. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae, Nature 403, 623–627.

    Google Scholar 

  9. Walhout, A. J., Sordella, R., Lu, X., Hartley, J. L., Temple, G. F., Brasch, M. A., Thierry-Mieg, N., and Vidal, M. (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development, Science 287, 116–122.

    Google Scholar 

  10. Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., Finley, R. L., Jr., White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R. A., McKenna, M. P., Chant, J., and Rothberg, J. M. (2003) A protein interaction map of Drosophila melanogaster, Science 302, 1727–1736.

    Google Scholar 

  11. Stanyon, C. A., Liu, G., Mangiola, B. A., Patel, N., Giot, L., Kuang, B., Zhang, H., Zhong, J., and Finley, R. L., Jr. (2004) A Drosophila protein-interaction map centered on cell-cycle regulators, Genome Biol 5, R96.

    Google Scholar 

  12. Flajolet, M., Rotondo, G., Daviet, L., Bergametti, F., Inchauspe, G., Tiollais, P., Transy, C., and Legrain, P. (2000) A genomic approach of the hepatitis C virus generates a protein interaction map, Gene 242, 369–379.

    Google Scholar 

  13. McCraith, S., Holtzman, T., Moss, B., and Fields, S. (2000) Genome-wide analysis of vaccinia virus protein-protein interactions, Proc Natl Acad Sci USA 97, 4879–4884.

    Google Scholar 

  14. Uetz, P., Dong, Y. A., Zeretzke, C., Atzler, C., Baiker, A., Berger, B., Rajagopala, S. V., Roupelieva, M., Rose, D., Fossum, E., and Haas, J. (2006) Herpesviral protein networks and their interaction with the human proteome, Science 311, 239–242.

    Google Scholar 

  15. Titz, B., Rajagopala, S. V., Goll, J., Hauser, R., McKevitt, M. T., Palzkill, T., and Uetz, P. (2008) The binary protein interactome of Treponema pallidum--the syphilis spirochete, PLoS ONE 3, e2292.

    Google Scholar 

  16. Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G. F., Gibbons, F. D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D. S., Zhang, L. V., Wong, S. L., Franklin, G., Li, S., Albala, J. S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R. S., Vandenhaute, J., Zoghbi, H. Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M. E., Hill, D. E., Roth, F. P., and Vidal, M. (2005) Towards a proteome-scale map of the human protein-protein interaction network, Nature 437, 1173–1178.

    Google Scholar 

  17. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., and Wanker, E. E. (2005) A human protein-protein interaction network: a resource for annotating the proteome, Cell 122, 957–968.

    Google Scholar 

  18. Jin, F., Avramova, L., Huang, J., and Hazbun, T. (2007) A yeast two-hybrid smart-pool-array system for protein-interaction mapping, Nat Methods 4, 405–407.

    Google Scholar 

  19. Thierry-Mieg, N. (2006) A new pooling strategy for high-throughput screening: the Shifted Transversal Design, BMC Bioinformatics 7, 28.

    Google Scholar 

  20. Zhong, J., Zhang, H., Stanyon, C. A., Tromp, G., and Finley, R. L., Jr. (2003) A strategy for constructing large protein interaction maps using the yeast two-hybrid system: regulated expression arrays and two-phase mating, Genome Res 13, 2691–2699.

    Google Scholar 

  21. Fields, S., and Song, O. (1989) A novel genetic system to detect protein-protein interactions, Nature 340, 245–246.

    Google Scholar 

  22. Gyuris, J., Golemis, E., Chertkov, H., and Brent, R. (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2, Cell 75, 791–803.

    Google Scholar 

  23. Finley, R. L., Jr., Zhang, H., Zhong, J., and Stanyon, C. A. (2002) Regulated expression of proteins in yeast using the MAL61-62 promoter and a mating scheme to increase dynamic range, Gene 285, 49–57.

    Google Scholar 

  24. Golemis, E. A., Serebriiskii, I., Finley, R. L., Jr., Kolonin, M. G., Gyuris, J., and Brent, R. (2008) Interaction trap/two-hybrid system to identify interacting proteins, Curr Protoc Mol Biol Chapter 20, Unit 20 21.

    Google Scholar 

  25. Estojak, J., Brent, R., and Golemis, E. A. (1995) Correlation of two-hybrid affinity data with in vitro measurements, Mol Cell Biol 15, 5820–5829.

    Google Scholar 

  26. Jafari-Khouzani, K., Soltanian-Zadeh, H., Fotouhi, F., Parrish, J. R., and Finley, R. L., Jr. (2007) Automated segmentation and classification of high throughput yeast assay spots, IEEE Trans Med Imaging 26, 1401–1411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell L. Finley Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roberts, G.G., Parrish, J.R., Mangiola, B.A., Finley, R.L. (2012). High-Throughput Yeast Two-Hybrid Screening. In: Suter, B., Wanker, E. (eds) Two Hybrid Technologies. Methods in Molecular Biology, vol 812. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-455-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-455-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-454-4

  • Online ISBN: 978-1-61779-455-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics