Skip to main content

In Vivo ChIP for the Analysis of Microdissected Tissue Samples

  • Protocol
  • First Online:
Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 809))

Abstract

The development of chromatin immunoprecipitation assays (ChIP) as a tool to examine the interactions between nuclear proteins and DNA has enhanced essentially our understanding of the dynamic association of transcription factors and chromatin modifiers with target DNA sequences. Still in vivo ChIP experiments of the central nervous system continue to represent a challenge given the considerable cellular and functional diversity, which makes the dissection of discrete circumscribed structures highly desirable. Tiny amounts of tissue can result, however, in insufficient quantities of starting material incompatible with many ChIP applications and lead to variable results. Here, we discuss the suitability of currently available ChIP protocols for in vivo ChIP experiments and present a new streamlined protocol that allows the processing of multiple samples with less time on hands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spencer VA, Sun JM, Li L, Davie JR. (2003). Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31, 67–75.

    Article  PubMed  CAS  Google Scholar 

  2. Yoder SJ, Enkemann SA. (2009). ChIP-on-Chip Analysis methods for Affymetrix Tiling Arrays. Methods Mol Biol 523, 367–381.

    Article  PubMed  CAS  Google Scholar 

  3. Ortt K, Sinha S. (2010). Chromatin immunoprecipitation for identifying transcription factor targets in keratinocytes. Methods Mol Biol 585, 159–170.

    Article  PubMed  CAS  Google Scholar 

  4. Park PJ. (2009). ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10, 669–680.

    Article  PubMed  CAS  Google Scholar 

  5. Herculano-Houzel S, Lent R. (2005). Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25, 2518–2521.

    Article  PubMed  CAS  Google Scholar 

  6. Solomon MJ, Larsen PL, Varshavsky A. (1988). Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937–947.

    Article  PubMed  CAS  Google Scholar 

  7. Collas P. (2009). The state-of-the-art of chromatin immunoprecipitation. Methods Mol Biol 567, 1–25.

    Article  PubMed  CAS  Google Scholar 

  8. Nelson JD, Denisenko O, Bomsztyk K. (2006). Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1, 179–185.

    Article  PubMed  CAS  Google Scholar 

  9. Nelson J, Denisenko O, Bomsztyk K. (2009). The fast chromatin immunoprecipitation method. Methods Mol Biol 567, 45–57.

    Article  PubMed  CAS  Google Scholar 

  10. Kohzaki H, Murakami Y. (2007). Faster and easier chromatin immunoprecipitation assay with high sensitivity. Proteomics 7, 10–14.

    Article  PubMed  CAS  Google Scholar 

  11. Collas P. (2009). The state-of-the-art of chromatin immunoprecipitation. Methods Mol Biol 567, 1–25.

    Article  PubMed  CAS  Google Scholar 

  12. Venteclef N, Haroniti A, Tousaint JJ, Talianidis I, Delerive P. (2008). Regulation of Anti-atherogenic Apolipoprotein M Gene Expression by the Orphan Nuclear Receptor LRH-1. J Bio Chem 283, 3694–3701.

    Article  CAS  Google Scholar 

  13. Flanagin S, Nelson JD, Castner DG, Denisenko O, Bomsztyk K. (2008). Microplatebased chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 36, 17.

    Article  Google Scholar 

  14. O’Neill LP, VerMilyea MD, Turner BM. (2006). Epigenitic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38, 835–841.

    Article  PubMed  Google Scholar 

  15. O’Neill LP, Turner BM. (1996). Immunoprecipitation of chromatin. Methods Enzymol 274, 189–197.

    Article  PubMed  Google Scholar 

  16. Hao H, Liu H, Gonye G, Schwaber JS. (2008). A fast carrier chromatin immunoprecipitation method appliciable to microdisected tissue samples. J Neurosci Methods 172, 38–42.

    Article  PubMed  Google Scholar 

  17. Dahl JA, Collas P. (2007). Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25, 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  18. Dahl JA, Collas P. (2008). A rapid micro chromatin immunoprecipitation assay (microChIP). Nat protocol 3, 1032–1045.

    Article  CAS  Google Scholar 

  19. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12, 1559–1566.

    Article  PubMed  CAS  Google Scholar 

  20. Palkovits M. (1972). Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Research 59, 449–450.

    Article  Google Scholar 

  21. Fujita N, Wade PA. (2004). Use of bifunctional cross-linking reagents in mapping genomic distribution of chromatin remodeling complexes. Methods 33, 81–85.

    Article  PubMed  CAS  Google Scholar 

  22. Zeng PY, Vakoc CR, Chen ZC, Blobel GA, Berger SL. (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques; 41, 694–698.

    Article  PubMed  CAS  Google Scholar 

  23. Furlan-Magaril M, Rincón-Arano H, Recillas-Targa F. (2009). Sequential chromatin immunoprecipitation protocol: ChIP-reChIP. Methods Mol Biol 543, 253–266.

    Article  PubMed  CAS  Google Scholar 

  24. Métivier R, Penot G, Hübner MR, Reid G, Brand H, Kos M, Gannon F. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763.

    Article  PubMed  Google Scholar 

  25. M. Braunstein, A.B. Rose, S.G. Holmes, C.D. Allis and J.R. Broach. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7, 592–604.

    Article  PubMed  CAS  Google Scholar 

  26. Guy J, Hendrich B, Holmes M, Martin JE, Bird A. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27, 322–326.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the European Union (CRESCENDO – European Union Contract number LSHM-CT-2005-018652) and the Deutsche Forschungsgemeinschaft (SP 386/4-2 to D.S.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Murgatroyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Murgatroyd, C., Hoffmann, A., Spengler, D. (2012). In Vivo ChIP for the Analysis of Microdissected Tissue Samples. In: Vancura, A. (eds) Transcriptional Regulation. Methods in Molecular Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-376-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-376-9_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-375-2

  • Online ISBN: 978-1-61779-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics