Skip to main content

Detection and Characterization of Transcription Termination

  • Protocol
  • First Online:
Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 809))

Abstract

In most eukaryotes, the generation of the 3′ end and transcription termination are initiated by cleavage of the pre-mRNA upstream of the polyadenylation site. This cleavage initiates 5′–3′ degradation of the 3′ end cleavage product by the exoribonuclease Rat1p leading to the dissociation of the RNA polymerase II (RNAPII) complex. The Rat1p-dependent transcription termination was also shown to be initiated by a polyadenylation-independent cleavage performed by the double-stranded RNA-specific ribonuclease (RNase) III (Rnt1p) suggesting that the majority of transcription termination events are RNase dependent. Therefore, it became essential for future studies on transcription termination to carefully consider both the nature of the RNase-dependent RNA transcripts and the association pattern of the RNAPII with the transcriptional unit. Here, we present methods allowing the evaluation of the impact of yeast RNases on the 3′ end formation and their contribution to transcription termination. Northern blot analysis of transcripts generated downstream of known genes in the absence of RNases identifies potential transcription termination sites while chromatin immunoprecipitation of RNAPII differentiates between termination- and transcription-independent processing events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prescott EM, Osheim YN, Jones HS, et al (2004) Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p. Proc Natl Acad Sci USA 101:6068–73

    Article  PubMed  CAS  Google Scholar 

  2. Cui M, Allen MA, Larsen A, Macmorris M, Han M, Blumenthal T (2008) Genes involved in pre-mRNA 3′-end formation and transcription termination revealed by a lin-15 operon Muv suppressor screen. Proc Natl Acad Sci USA 105:16665–70

    Article  PubMed  CAS  Google Scholar 

  3. Zarudnaya MI, Kolomiets IM, Hovorun DM (2002) What nuclease cleaves pre-mRNA in the process of polyadenylation? IUBMB Life 54:27–31

    Article  PubMed  CAS  Google Scholar 

  4. Tollervey D (2004) Molecular biology: termination by torpedo. Nature 432:456–7

    Article  PubMed  CAS  Google Scholar 

  5. Luo W, Bentley D. (2004) A ribonucleolytic rat torpedoes RNA polymerase II. Cell 119:911–4

    Article  PubMed  CAS  Google Scholar 

  6. West S, Gromak N, Proudfoot NJ (2004) Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432:522–5

    Article  PubMed  CAS  Google Scholar 

  7. Kim M, Vasiljeva L, Rando OJ, Zhelkovsky A, Moore C, Buratowski S (2006) Distinct pathways for snoRNA and mRNA termination. Mol Cell 24:723–34

    Article  PubMed  CAS  Google Scholar 

  8. Carroll KL, Pradhan DA, Granek JA, Clarke ND, Corden JL (2004) Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol 24:6241–52

    Article  PubMed  CAS  Google Scholar 

  9. Osheim YN, French SL, Keck KM, et al (2004) Pre-18 S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Mol Cell 16:943–54

    Article  PubMed  CAS  Google Scholar 

  10. Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA (2006) Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 24:735–46

    Article  PubMed  CAS  Google Scholar 

  11. Egloff S, O’Reilly D, Murphy S (2008) Expression of human snRNA genes from beginning to end. Biochem Soc Trans 36:590–4

    Article  PubMed  CAS  Google Scholar 

  12. Richard P, Manley JL (2009) Transcription termination by nuclear RNA polymerases. Genes Dev 23:1247–69

    Article  PubMed  CAS  Google Scholar 

  13. Ghazal G, Gagnon J, Jacques PE, Landry JR, Robert F, Elela SA (2009) Yeast RNase III triggers polyadenylation-independent transcription termination. Mol Cell 36:99–109

    Article  PubMed  CAS  Google Scholar 

  14. Rondon AG, Mischo HE, Kawauchi J, Proudfoot NJ (2009) Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell 36:88–98

    Article  PubMed  CAS  Google Scholar 

  15. Taggart AK, Teng SC, Zakian VA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297:1023–6

    Article  PubMed  CAS  Google Scholar 

  16. Lamontagne B, Tremblay A, Abou Elela S (2000) The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage. Mol Cell Biol 20:1104–15

    Article  PubMed  CAS  Google Scholar 

  17. David L, Huber W, Granovskaia M, et al (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103:5320–5

    Article  PubMed  CAS  Google Scholar 

  18. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–86

    PubMed  CAS  Google Scholar 

  19. SantaLucia J, Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95:1460–5

    Article  PubMed  CAS  Google Scholar 

  20. Brosseau JP, Lucier JF, Lapointe E, et al (2010) High-throughput quantification of splicing isoforms. RNA 16:442–9

    Article  PubMed  CAS  Google Scholar 

  21. Lopez R, Silventoinen V, Robinson S, Kibria A, Gish W (2003) WU-Blast2 server at the European Bioinformatics Institute. Nucleic Acids Res 31:3795–8

    Article  PubMed  CAS  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5

    Article  PubMed  CAS  Google Scholar 

  23. Catala M, Tremblay M, Samson E, Conconi A, Abou Elela S (2008) Deletion of Rnt1p alters the proportion of open versus closed rRNA gene repeats in yeast. Mol Cell Biol 28:619–29

    Article  PubMed  CAS  Google Scholar 

  24. Cherry JM, Ball C, Weng S, et al (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature 387:67–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institute of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Abou Elela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ghazal, G., Gagnon, J., Elela, S.A. (2012). Detection and Characterization of Transcription Termination. In: Vancura, A. (eds) Transcriptional Regulation. Methods in Molecular Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-376-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-376-9_38

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-375-2

  • Online ISBN: 978-1-61779-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics