Skip to main content

Overview of Chemical Genomics and Proteomics

  • Protocol
  • First Online:
Chemical Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 800))

Abstract

Chemical genetics, genomics, and proteomics have been in existence as distinct offshoots of chemical biology for about 20 years. This review provides a brief definition of each, followed by some examples of how each technology is being used to advance basic research and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leathes JB (1930) The Harveian oration on the birth of chemical biology. Br Med J 2:671–676

    Article  PubMed  CAS  Google Scholar 

  2. MacBeath G (2001) Chemical genomics: what will it take and who gets to play? Genome Biol doi:10.1186/gb-2001-2-6-comment 2005

    Google Scholar 

  3. Schreiber SL (1998) Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg Med Chem 6:1127–52

    Article  PubMed  CAS  Google Scholar 

  4. Jessani N, Liu Y, Humphrey M, Cravatt BF (2002) Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc Natl Acad Sci USA 99:10335–40

    Article  PubMed  CAS  Google Scholar 

  5. Jeffery DA, Bogyo M (2003) Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol 14:87–95

    Article  PubMed  CAS  Google Scholar 

  6. Chen TF et al. (2000) A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR) Proc Natl Acad Sci USA 97:13227–32

    Article  Google Scholar 

  7. Caron P (2005) Introduction to Chemical Genomics. In: Zanders ED (ed) Chemical Genomics, Reviews and Protocols. Humana Press, New Jersey

    Google Scholar 

  8. Stockwell BR (2000) Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 1:116–25

    Article  PubMed  CAS  Google Scholar 

  9. Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5:616–24

    Article  PubMed  CAS  Google Scholar 

  10. Kidd D, Liu Y, Cravatt BF (2001) Profiling serine hydrolase activities in complex proteomes. Biochemistry 40:4005–15

    Article  PubMed  CAS  Google Scholar 

  11. Hughes TR et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–26

    Article  PubMed  CAS  Google Scholar 

  12. Ganter B et al. (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol 119:219–44

    Article  PubMed  CAS  Google Scholar 

  13. Lamb J (2006) The connectivity map: Using Gene-Expression Signatures to Connect Small Molecules, Genes and Disease. Science 313:1929–1935

    Article  PubMed  CAS  Google Scholar 

  14. Subramanian A (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  PubMed  CAS  Google Scholar 

  15. Josset L et al. (2010) Gene expression signature-based screening identifies new broadly effective influenza A antivirals. PLoS One doi:10.1371/journal.pone.0013169

    Google Scholar 

  16. Hassane DC et al. (2010) Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood 116:5983–90

    Article  PubMed  CAS  Google Scholar 

  17. http://www.broadinstitute.org/cmap/ Accessed 15 February 2011

  18. Barrero MJ, Izpisua Belmonte JC (2011) Regenerating the epigenome. EMBO Rep doi:10.1038/embor.2011.10

    Google Scholar 

  19. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  PubMed  CAS  Google Scholar 

  20. Eliseeva ED et al. (2007) Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther 6:2391–8

    Article  PubMed  CAS  Google Scholar 

  21. M Yoshida (2009) Chemical genomics: a key to the epigenome – an interview with Minoru Yoshida. Int J Dev Biol 53: 269–74

    Article  PubMed  Google Scholar 

  22. Kaida D et al. (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3:533–5

    Article  Google Scholar 

  23. Taverna SD Cole PA (2010) Reader’s block. Nature 468:1050–1051

    Article  PubMed  CAS  Google Scholar 

  24. Fillipakopoulos P et al. (2010) Selective inhibition of BET bromodomains. Nature 468:1067–1073

    Article  Google Scholar 

  25. Nicodeme E et al. (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468:1119–1123

    Article  PubMed  CAS  Google Scholar 

  26. Graves PR et al. (2002) Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol Pharmacol 62:1364–72

    Article  PubMed  CAS  Google Scholar 

  27. Wissing J et al. (2007) Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry. Mol Cell Proteomics 6:537–47

    PubMed  CAS  Google Scholar 

  28. Bantscheff M et al. (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–44

    Article  PubMed  CAS  Google Scholar 

  29. Peters EC, Gray NS (2007) Chemical Proteomics Identifies Unanticipated Targets of Clinical Kinase Inhibitors. ACS Chemical Biology 2:661–664

    Article  PubMed  CAS  Google Scholar 

  30. Rix U et al. (2010) A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells INNO-406 target profile in CML. Leukemia 24:44–50

    Article  PubMed  CAS  Google Scholar 

  31. Ito T et al. (2010) Identification of a Primary Target of Thalidomide Teratogenicity. Science 327:1345–1350

    Article  PubMed  CAS  Google Scholar 

  32. Sakamoto S et al. (2009) Development and application of high-performance affinity beads: Toward chemical biology and drug discovery. The Chemical Record 9:66–85

    Article  CAS  Google Scholar 

  33. http://www.ncgc.nih.gov/index.html Accessed 16 February 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Zanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zanders, E.D. (2012). Overview of Chemical Genomics and Proteomics. In: Zanders, E. (eds) Chemical Genomics and Proteomics. Methods in Molecular Biology, vol 800. Humana Press. https://doi.org/10.1007/978-1-61779-349-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-349-3_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-348-6

  • Online ISBN: 978-1-61779-349-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics