Skip to main content

Use of Unnatural Amino Acids to Probe Structure–Activity Relationships and Mode-of-Action of Antimicrobial Peptides

  • Protocol
  • First Online:
Unnatural Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 794))

Abstract

Endogenous antimicrobial peptides (AMPs) can have multimodal mechanisms of bacterial inactivation, such as membrane lysis, interference with cell wall biosynthesis or membrane-based protein machineries, or translocation through the membrane to intracellular targets. The controlled variation of side-chain characteristics in their amino acid residues can provide much useful information on structure–activity relationships and mode-of-action, and also lead to improved activities. The small size and relatively low complexity of AMPs make them amenable to solid-phase peptide synthesis, facilitating the use of nonproteinogenic amino acids and vastly increasing the accessible molecular diversity of side chains. Here, we describe how such residues can be used to modulate such key parameters as cationicity, hydrophobicity, steric factors conformational stability, and H-bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Amino acid

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCM:

Dichloromethane

DIPCDI:

Diisopropyl carbodiimide

DKP:

Diketopiperazine

DMF:

N,N-dimethylformamide

DODT:

3,6-Dioxa-1,8-octanedithiol

EDT:

Ethaneditiol

Fmoc:

Fluorenylmethyloxycarbonyl

HFIP:

Hexafluoroisopropanol

HOBt:

Hydroxybenzotriazole

ivDde:

1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methyl-butyl

Mmt:

Monomethoxytrityl

NMP:

N-methylpyrrolidone

OSu:

Succinimidyl carbonate

PEG-PS:

Polyethyleneglycol-polystyrene

PG:

Side-chain protecting group

PIP:

Piperidine

PyBOP:

(Benzotriazol-1-yl-oxy)tripyrrolidinophosphonium hexafluoro phosphate

s.r.v.:

Swelled resin volume

SPPS:

Solid-phase peptide synthesis

TIPS:

Triisopropylsilane

References

  1. Hancock R E, Sahl H G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24, 1551–1557.

    Article  PubMed  CAS  Google Scholar 

  2. Brogden K A (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3, 238–250.

    Article  PubMed  CAS  Google Scholar 

  3. Peschel A, Sahl H G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4, 529–536.

    Article  PubMed  CAS  Google Scholar 

  4. Lai Y, Gallo R L (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30, 131–141.

    Article  PubMed  CAS  Google Scholar 

  5. Mattiuzzo M et al. (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66, 151–163.

    Article  PubMed  CAS  Google Scholar 

  6. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788, 1687–1692.

    Article  PubMed  CAS  Google Scholar 

  7. Isidro-Llobet A et al. (2009) Amino acid-protecting groups. Chem Rev 109, 2455–2504.

    Article  PubMed  CAS  Google Scholar 

  8. Zelezetsky I et al. (2005) Controlled alteration of the shape and conformational stability of alpha-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 390, 177–188.

    Article  PubMed  CAS  Google Scholar 

  9. Zelezetsky I et al. (2005) Tuning the biological properties of amphipathic alpha-helical antimicrobial peptides: rational use of minimal amino acid substitutions. Peptides 26, 2368–2376.

    Article  PubMed  CAS  Google Scholar 

  10. Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides - using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta 1758, 1436–1449.

    Article  PubMed  CAS  Google Scholar 

  11. Zou G et al. (2007) Toward understanding the cationicity of defensins. Arg and Lys versus their noncoded analogs. J Biol Chem 282, 19653–19665.

    CAS  Google Scholar 

  12. Eisenberg D, McLachlan A D (1986) Solvation energy in protein folding and binding. Nature 319, 199–203.

    Article  PubMed  CAS  Google Scholar 

  13. Kyte J, Doolittle R F (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  14. Fauchere J L, Pliska V (1983) Hydrophobic parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. J Eur J Med Chem 18, 369–375.

    CAS  Google Scholar 

  15. Giangaspero A et al. (2001) Amphipathic alpha helical antimicrobial peptides. Eur J Biochem 268, 5589–5600.

    Article  PubMed  CAS  Google Scholar 

  16. Rothemund S et al. (1995) Structure effects of double D-amino acid replacements: a nuclear magnetic resonance and circular dichroism study using amphipathic model helices. Biochemistry 34, 12954–12962.

    Article  PubMed  CAS  Google Scholar 

  17. Braunstein A et al. (2004) In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob Agents Chemother 48, 3127–3129.

    Article  PubMed  CAS  Google Scholar 

  18. Tomasinsig L et al. (2008) The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 283, 30471–30481.

    Article  PubMed  CAS  Google Scholar 

  19. Vunnam S et al. (1998) Synthesis and study of normal, enantio, retro, and retroenantio isomers of cecropin A-melittin hybrids, their end group effects and selective enzyme inactivation. J Pept Res 51, 38–44.

    Article  PubMed  CAS  Google Scholar 

  20. Podda E et al. (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760, 1732–1740.

    PubMed  CAS  Google Scholar 

  21. Fernandez-Reyes M et al. (2010) Lysine N(epsilon)-trimethylation, a tool for improving the selectivity of antimicrobial peptides. J Med Chem 53, 5587–5596.

    Article  PubMed  CAS  Google Scholar 

  22. Chan D I et al. (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758, 1184–1202.

    Article  PubMed  CAS  Google Scholar 

  23. Li S et al. (2010) Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy. J Phys Chem B 114, 4063–4069.

    Article  PubMed  CAS  Google Scholar 

  24. Tang M et al. (2008) Effects of guanidinium-phosphate hydrogen bonding on the membrane-bound structure and activity of an arginine-rich membrane peptide from solid-state NMR spectroscopy. Angew Chem Int Ed Engl 47, 3202–3205.

    Article  PubMed  CAS  Google Scholar 

  25. Knappe D et al. (2010) Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrob Agents Chemother 54, 4003–4005.

    Article  PubMed  CAS  Google Scholar 

  26. Izdebski J et al. (2007) Synthesis and biological activity of homoarginine-containing opioid peptides. J Pept Sci 13, 27–30.

    Article  PubMed  CAS  Google Scholar 

  27. Gobbo M et al. (2009) Substitution of the arginine/leucine residues in apidaecin Ib with peptoid residues: effect on antimicrobial activity, cellular uptake, and proteolytic degradation. J Med Chem 52, 5197–5206.

    Article  PubMed  CAS  Google Scholar 

  28. Chongsiriwatana N P et al. (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 105, 2794–2799.

    Article  PubMed  CAS  Google Scholar 

  29. Liu S P et al. (2010) Multivalent antimicrobial peptides as therapeutics: design Principles and structural diversities. Int J Pept Res Ther 16, 199–213.

    Article  PubMed  Google Scholar 

  30. Pini A et al. (2008) Branched peptides as therapeutics. Curr Protein Pept Sci 9, 468–477.

    Article  PubMed  CAS  Google Scholar 

  31. Tomasinsig L et al. (2006) Mechanistic and functional studies of the interaction of a proline-rich antimicrobial peptide with mammalian cells. J Biol Chem 281, 383–391.

    Article  PubMed  CAS  Google Scholar 

  32. Getahun Z et al. (2003) Using nitrile-derivatized amino acids as infrared probes of local environment. J Am Chem Soc 125, 405–411.

    Article  PubMed  CAS  Google Scholar 

  33. Morgera F et al. (2008) Structuring and interactions of human beta-defensins 2 and 3 with model membranes. J Pept Sci 14, 518–523.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Friuli Venezia Giulia LR 26 regional grant R3A2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Tossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tossi, A., Scocchi, M., Zahariev, S., Gennaro, R. (2012). Use of Unnatural Amino Acids to Probe Structure–Activity Relationships and Mode-of-Action of Antimicrobial Peptides. In: Pollegioni, L., Servi, S. (eds) Unnatural Amino Acids. Methods in Molecular Biology, vol 794. Humana Press. https://doi.org/10.1007/978-1-61779-331-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-331-8_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-330-1

  • Online ISBN: 978-1-61779-331-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics