Skip to main content

Combined Chromatin Immunoprecipitation and Bisulfite Methylation Sequencing Analysis

  • Protocol
  • First Online:
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 791))

Abstract

Epigenetic mechanisms control gene transcription primarily through regulating chromatin structures and DNA methylation. Transcription factors can also affect gene transcription through binding of the key transcriptional machinery to the gene promoter. These factors normally jointly influence the transcriptional processes, leading to silencing or activation of gene expression. A novel technique has been recently explored in our laboratory, which is a combination of conventional chromatin immunoprecipitation (ChIP) with bisulfite methylation sequencing assays, so-called ChIP and bisulfite methylation sequencing (ChIP-BMS). This technique provides precise information of DNA methylation status at the selected DNA fragments precipitated by the antibodies to histone molecules or transcription factors of interest. This method also helps to investigate the interactions between histone modification and DNA methylation, and how this crosstalking can affect gene expression. More importantly, it is easy to determine potential methylation-sensitive transcription factors that influence transcription mainly depending on methylation status of the binding sites. In this chapter, we discuss the detailed procedures of this novel technique and its broad application in epigenetic and genetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.

    Article  PubMed  CAS  Google Scholar 

  2. Kass, S. U., Pruss, D., and Wolffe, A. P. (1997) How does DNA methylation repress transcription? Trends Genet. 13, 444–449.

    Article  PubMed  CAS  Google Scholar 

  3. Bird, A. P., and Wolffe, A. P. (1999) Methylation-induced repression belts, braces, and chromatin. Cell 99, 451–454.

    Article  PubMed  CAS  Google Scholar 

  4. Ohlsson, R., Renkawitz, R., and Lobanenkov, V. (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 17, 520–527.

    Article  PubMed  CAS  Google Scholar 

  5. Hark, A. T., Schoenherr, C. J., Katz, D. J., Ingram, R. S., Levorse, J. M., and Tilghman, S. M. (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489.

    Article  PubMed  CAS  Google Scholar 

  6. Mikovits, J. A., Young, H. A., Vertino, P., Issa, J. P., Pitha, P. M., Turcoski-Corrales, S., Taub, D. D., Petrow, C. L., Baylin, S. B., and Ruscetti, F. W. (1998) Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-γ) promoter and subsequent downregulation of IFN-γ production. Mol. Cell. Biol. 18, 5166–5177.

    PubMed  CAS  Google Scholar 

  7. Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N., and Weintraub, H. (1990) Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151.

    Article  PubMed  CAS  Google Scholar 

  8. Höller, M., Westin, G., Jiricny, J., and Schaffner, W. (1998) Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 2, 1127–1135.

    Article  Google Scholar 

  9. Ohtani, K., DeGregori, J., and Nevins, J. R. (1995) Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl. Acad. Sci. USA. 92, 12146–12150.

    Article  PubMed  CAS  Google Scholar 

  10. Li, Y., Liu, L., Andrews, L. G., and Tollefsbol, T. O. (2009) Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int. J. Cancer 125, 286–296.

    Article  PubMed  CAS  Google Scholar 

  11. Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., Strouboulis, J., and Wolffe, A. P. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191.

    Article  PubMed  CAS  Google Scholar 

  12. Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., and Bird A. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.

    Article  PubMed  CAS  Google Scholar 

  13. Berger, S. L. (2007) The complex language of chromatin regulation during transcription. Nature 447, 407–412.

    Article  PubMed  CAS  Google Scholar 

  14. Kouzarides, T. (2007) Chromatin modifications and their function. javascript:AL_get(this, ‘jour’, ‘Cell.’);Cell 128, 693–705.

    Google Scholar 

  15. Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane-Robinson, C., Allis, C. D., and Workman, J. L. (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15, 2508–2518.

    PubMed  CAS  Google Scholar 

  16. Lee, D. Y., Hayes, J. J., Pruss, D., and Wolffe, A. P. (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84.

    Article  PubMed  CAS  Google Scholar 

  17. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C.M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 8918271831.

    Article  PubMed  CAS  Google Scholar 

  18. Das, P. M., Ramachandran, K., vanWert, J., and Singal, R. (2004) Chromatin immunoprecipitation assay. Biotechniques 37, 961–969.

    PubMed  CAS  Google Scholar 

  19. Weinmann, A. S., and Farnham, P. J. (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26, 37–47.

    Article  PubMed  CAS  Google Scholar 

  20. Buck, M. J., and Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360.

    Article  PubMed  CAS  Google Scholar 

  21. Orlando, V., Strutt, H., and Paro, R. (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214.

    Article  PubMed  CAS  Google Scholar 

  22. O’Neill, L. P., and Turner, B. M. (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82.

    Article  PubMed  Google Scholar 

  23. Olek, A., Oswald, J., and Walter, J. (1996) A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24, 5064–5066.

    Article  PubMed  CAS  Google Scholar 

  24. Li, L. C. (2007) Designing PCR primer for DNA methylation mapping. Methods Mol. Biol. 402 371384.

    Article  PubMed  CAS  Google Scholar 

  25. Li, L. C. (2002) Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Cancer Institute (R01 CA 129415), the Susan G. Komen for the Cure, and a Postdoctoral Award (PDA) sponsored by the American Institute for Cancer Research (AICR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trygve O. Tollefsbol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, Y., Tollefsbol, T.O. (2011). Combined Chromatin Immunoprecipitation and Bisulfite Methylation Sequencing Analysis. In: Tollefsbol, T. (eds) Epigenetics Protocols. Methods in Molecular Biology, vol 791. Humana Press. https://doi.org/10.1007/978-1-61779-316-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-316-5_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-315-8

  • Online ISBN: 978-1-61779-316-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics