Skip to main content

Structural and Dynamic Characterization of Biochemical Processes by Atomic Force Microscopy

  • Protocol
  • First Online:
Single Molecule Enzymology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 778))

Abstract

Atomic Force Microscopy (AFM) has gained increasing popularity over the years among biophysicists due to its ability to image and to measure pN to nN forces on biologically relevant scales (nm to μm). Continuous technical developments have made AFM capable of nondisruptive, subsecond imaging of fragile biological samples in a liquid environment, making this method a potent alternative to light microscopy. In this chapter, we discuss the basics of AFM, its theoretical limitations, and we describe how this technique can be used to get single protein resolution in liquids at room temperature. Provided imaging is done at low-enough forces to avoid sample disruption and conformational changes, AFM allows obtaining unique insights into enzyme dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. F., and Gerber, C. (1985) Atomic Force Microscope, Phys. Rev. Lett. 56, 930–933.

    Article  Google Scholar 

  2. Martin, Y., Williams, C. C., and Wickramasinghe, H. K. (1987) Atomic force microscope–force mapping and profiling on a sub 100-Å scale, J. Appl. Phys. 61, 4723.

    Article  CAS  Google Scholar 

  3. Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B., Massie, J., Fukunaga, L., Gurley, J., and Elings, V. (1994) Tapping mode atomic force microscopy in liquids, Appl. Phys. Lett. 64, 1738–1740.

    Article  CAS  Google Scholar 

  4. Xu, X., Carrasco, C., de Pablo, P. J., Gomez-Herrero, J., and Raman, A. (2008) Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: a case study on viral capsids, Biophys. J. 95, 2520–2528.

    Google Scholar 

  5. Schaap, I. A. T., Carrasco, C., de Pablo, P. J., MacKintosh, F. C., and Schmidt, C. F. (2006) Elastic Response, Buckling, and Instability of Microtubules under Radial Indentation, Biophys. J. 91, 1521–1531.

    Google Scholar 

  6. Ivanovska, I. L., de Pablo, P. J., Ibarra, B., Sgalari, G., MacKintosh, F. C., Carrascosa, J. L., Schmidt, C. F., and Wuite, G. J. L. (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties, Proc. Natl. Acad. Sci. USA 101, 7600–7605.

    Article  PubMed  CAS  Google Scholar 

  7. Goodman, R. P., Schaap, I. A. T., Tardin, C. F., Erben, C. M., Berry, R. M., Schmidt, C. F., and Turberfield, A. J. (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication, Science 310, 1661–1665.

    Article  PubMed  CAS  Google Scholar 

  8. (2007) Cell Mechanics, Volume 83 (Methods in Cell Biology). Academic Press.

    Google Scholar 

  9. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276, 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez, J. M., and Li, H. (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein, Science 303, 1674–1678.

    Article  PubMed  CAS  Google Scholar 

  11. Florin, E. L., Moy, V. T., and Gaub, H. E. (1994) Adhesion forces between individual ligand-receptor pairs, Science 264, 415–417.

    Article  PubMed  CAS  Google Scholar 

  12. Hinterdorfer, P., and Dufrêne, Y. F. (2006) Detection and localization of single molecular recognition events using atomic force microscopy, Nat. Methods 3, 347–355.

    Google Scholar 

  13. Puchner, E. M., Alexandrovich, A., Kho, A. L., Hensen, U., Schäfer, L. V., Brandmeier, B., Gräter, F., Grubmüller, H., Gaub, H. E., and Gautel, M. (2008) Mechanoenzymatics of titin kinase, Proc. Natl. Acad. Sci. USA 105, 13385–13390.

    Article  PubMed  CAS  Google Scholar 

  14. Morris, V. J., Kirby, A. R., and Gunning, A. P. Atomic Force Microscopy For Biologists. Imperial College Press.

    Google Scholar 

  15. Fechner, P., Boudier, T., Mangenot, S., Jaroslawski, S., Sturgis, J. N., and Scheuring, S. (2009) Structural information, resolution, and noise in high-resolution atomic force microscopy topographs, Biophys. J 96, 3822–3831.

    Google Scholar 

  16. Roy, R., Hohng, S., and Ha, T. (2008) A practical guide to single-molecule FRET, Nat. Methods 5, 507–516.

    Google Scholar 

  17. Müller, D. J., and Engel, A. (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy, J. Mol. Biol 285, 1347–1351.

    Article  PubMed  Google Scholar 

  18. Moreno-Herrero, F., de Jager, M., Dekker, N. H., Kanaar, R., Wyman, C., and Dekker, C. (2005) Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA, Nature 437, 440–443.

    Article  PubMed  CAS  Google Scholar 

  19. Schaap, I., Carrasco, C., de Pablo, P. J., and Schmidt, C. F. (2011) Kinesin walks the line: single motors observed by atomic force microscopy. Biophys. J. 100, 2450–2456.

    Article  Google Scholar 

  20. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., and Toda, A. (2001) A high-speed atomic force microscope for studying biological macromolecules, Proc. Natl. Acad. Sci. USA 98, 12468–12472.

    Article  PubMed  CAS  Google Scholar 

  21. van Noort, S. J., van Der Werf, K. O., de Grooth, B. G., and Greve, J. (1999) High speed atomic force microscopy of biomolecules by image tracking, Biophys. J. 77, 2295–2303.

    Google Scholar 

  22. Picco, L. M., Bozec, L., Ulcinas, A., Engledew, D., Antognozzi, M., Horton, M., and Miles, M. (2007) Breaking the speed limit with atomic force microscopy, Nanotechnology 18.

    Google Scholar 

  23. Fantner, G. E., Schitter, G., Kindt, J. H., Ivanov, T., Ivanova, K., Patel, R., Holten-Andersen, N., Adams, J., Thurner, P. J., Rangelow, I. W., and Hansma, P. K. (2006) Components for high speed atomic force microscopy, Ultramicroscopy 106, 881–887.

    Article  PubMed  CAS  Google Scholar 

  24. Kodera, N., Yamamoto, D., Ishikawa, R., and Ando, T. (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76.

    Article  PubMed  CAS  Google Scholar 

  25. Crampton, N., Yokokawa, M., Dryden, D. T. F., Edwardson, J. M., Rao, D. N., Takeyasu, K., Yoshimura, S. H., and Henderson, R. M. (2007) Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping, Proc. Natl. Acad. Sci. USA 104, 12755–12760.

    Article  PubMed  CAS  Google Scholar 

  26. Yokokawa, M., Wada, C., Ando, T., Sakai, N., Yagi, A., Yoshimura, S. H., and Takeyasu, K. (2006) Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL, EMBO J 25, 4567–4576.

    Article  PubMed  CAS  Google Scholar 

  27. Radmacher, M., Fritz, M., Hansma, H. G., and Hansma, P. K. (1994) Direct observation of enzyme activity with the atomic force microscope, Science 265, 1577–1579.

    Article  PubMed  CAS  Google Scholar 

  28. Thomson, N. H., Fritz, M., Radmacher, M., Cleveland, J. P., Schmidt, C. F., and Hansma, P. K. (1996) Protein tracking and detection of protein motion using atomic force microscopy, Biophys. J 70, 2421–2431.

    Google Scholar 

  29. Viani, M. B., Pietrasanta, L. I., Thompson, J. B., Chand, A., Gebeshuber, I. C., Kindt, J. H., Richter, M., Hansma, H. G., and Hansma, P. K. (2000) Probing protein–protein interactions in real time, Nat. Struct. Biol. 7, 644–647.

    Article  PubMed  CAS  Google Scholar 

  30. Kawaguchi, K., and Ishiwata, S. (2001) Nucleotide-dependent single- to double-headed binding of kinesin, Science 291, 667–669.

    Article  PubMed  CAS  Google Scholar 

  31. Horcas, I., Fernández, R., Gómez-Rodríguez, J. M., Colchero, J., Gómez-Herrero, J., and Baro, A. M. (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum 78, 013705.

    Article  PubMed  CAS  Google Scholar 

  32. Williams, R. C., and Lee, J. C. (1982) Preparation of tubulin from brain, in Structural and Contractile Proteins Part B: The Contractile Apparatus and the Cytoskeleton, pp 376–385. Academic Press.

    Google Scholar 

  33. Carrasco, C., Carreira, A., Schaap, I. A. T., Serena, P. A., Gómez-Herrero, J., Mateu, M. G., and de Pablo, P. J. (2006) DNA-mediated anisotropic mechanical reinforcement of a virus, Proc. Natl. Acad. Sci. USA 103, 13706–13711.

    Article  PubMed  CAS  Google Scholar 

  34. Gittes, F., and Schmidt, C. F. (1998) Signals and noise in micromechanical measurements, Methods Cell Biol. 55, 129–156.

    Article  PubMed  CAS  Google Scholar 

  35. Viani, M. B., Schaffer, T. E., Paloczi, G. T., Pietrasanta, L. I., Smith, B. L., Thompson, J. B., Richter, M., Rief, M., Gaub, H. E., Plaxco, K. W., Cleland, A. N., Hansma, H. G., and Hansma, P. K. (1999) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers, Rev. Sci. Instrum 70, 4300–4303.

    Article  CAS  Google Scholar 

  36. Hutter, J. L., and Bechhoefer, J. (1993) Calibration of atomic-force microscope tips, Rev. Sci. Instrum 64, 1868.

    Article  CAS  Google Scholar 

  37. Proksch, R., Schaffer, T. E., Cleveland, J. P., Callahan, R. C., and Viani, M. B. (2004) Finite optical spot size and position corrections in thermal spring constant calibration, Nanotechnology 15, 1344–1350.

    Article  Google Scholar 

  38. Burnham, N., Chen, X., Hodges, C., Matei, G., Thoreson, E., Roberts, C., Davies, M., and Tendler, S. (2003) Comparison of calibration methods foratomic-force microscopy cantilevers, Nanotechnology 14, 1–6.

    Article  CAS  Google Scholar 

  39. Sader, J. E. (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, J. Appl. Phys. 84, 64–76.

    Article  CAS  Google Scholar 

  40. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank, Nucleic Acids Res. 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  41. Schaap, I. A. T., Hoffmann, B., Carrasco, C., Merkel, R., and Schmidt, C. F. (2007) Tau protein binding forms a 1 nm thick layer along protofilaments without affecting the radial elasticity of microtubules, J. Struct. Biol. 158, 282–292.

    Article  PubMed  CAS  Google Scholar 

  42. Schabert, F. A., Henn, C., and Engel, A. (1995) Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy, Science 268, 92–94.

    Article  PubMed  CAS  Google Scholar 

  43. Schaap, I. A. T., de Pablo, P. J., and Schmidt, C. F. (2004) Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy, Eur. Biophys. J. 33, 462–467.

    Article  PubMed  CAS  Google Scholar 

  44. Snyder, J. P., Nettles, J. H., Cornett, B., Downing, K. H., and Nogales, E. (2001) The binding conformation of Taxol in beta-tubulin: a model based on electron crystallographic density, Proc. Natl. Acad. Sci. USA 98, 5312–5316.

    Article  PubMed  CAS  Google Scholar 

  45. Graveland-Bikker, J. F., Schaap, I. A. T., Schmidt, C. F., and de Kruif, C. G. (2006) Structural and mechanical study of a self-assembling protein nanotube, Nano Lett 6, 616–621.

    Article  PubMed  CAS  Google Scholar 

  46. Wilts, B. D., Schaap, I. A., Young, M. J., Douglas, T., Knobler, C. M., and Schmidt, C. F. (2010) Swelling and Softening of the CCMV Plant Virus Capsid in Response to pH Shifts, Biophys. J. 98, 656a.

    Article  Google Scholar 

  47. Li, S., Eghiaian, F., Sieben, C., Herrmann, A., and Schaap, I. A. T. (2011) Bending and puncturing the influenza lipid envelope. Biophys. J. 100, 637–645.

    Google Scholar 

Download references

Acknowledgments

We thank Sebastian Hanke and Jan Knappe for performing the imaging of DNA and the thermal noise measurements, and Bodo Wilts, Christoph F. Schmidt, Pedro de Pablo, and Carolina Carrasco for useful discussions. F. Eghiaian and I.A.T Schaap are supported by the DFG Research Center for Molecular Physiology of the Brain (CMPB)/Excellence Cluster 171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwan A. T. Schaap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eghiaian, F., Schaap, I.A.T. (2011). Structural and Dynamic Characterization of Biochemical Processes by Atomic Force Microscopy. In: Mashanov, G., Batters, C. (eds) Single Molecule Enzymology. Methods in Molecular Biology, vol 778. Humana Press. https://doi.org/10.1007/978-1-61779-261-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-261-8_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-260-1

  • Online ISBN: 978-1-61779-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics