Skip to main content

Probing the Mechanics of the Complete DNA Transcription Cycle in Real-Time Using Optical Tweezers

  • Protocol
  • First Online:
Single Molecule Enzymology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 778))

Abstract

RNA polymerase (RNAP) is a DNA-dependent motor protein that links ribonucleotide polymerization to force generation and DNA translocation through its active site, i.e., mechanical work. Single-molecule studies using optical tweezers have allowed researchers to probe the load-dependent ribonucleotide incorporation rate and processivity of both single-subunit viral and multisubunit prokaryotic and eukaryotic RNAPs engaged in transcription elongation. A single-molecule method is described here, which allows the complete transcription cycle (i.e., promoter binding, initiation, elongation and termination) to be followed in real-time using dual-trap optical tweezers and a unique “three-bead” geometry. This single-molecule transcription assay can be used to probe the mechanics of both stationary and moving RNAP–DNA complexes engaged in different stages of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herbert, K. M., Greenleaf, W. J., and Block, S. M. (2008) Single-molecule studies of RNA polymerase: motoring along. Annu. Rev. Biochem. 77, 149–176.

    Article  PubMed  CAS  Google Scholar 

  2. Revyakin, A., Ebright, R. H., and Strick, T. R. (2004) Promoter unwinding and promoter clearance by RNA polymerase: Detection by single-molecule DNA nanomanipulation. Proc. Natl. Acad. Sci. USA 101, 4776–4780.

    Article  PubMed  CAS  Google Scholar 

  3. Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., and Gelles, J. (1995) Transcription against an applied force. Science 270, 1653–1657.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, M. D., Schnitzer, M. J., Yin, H., Landick, R., Gelles, J., and Block, S. M. (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907.

    Article  PubMed  CAS  Google Scholar 

  5. Davenport, R. J., Wuite, G. J. L., Landick, R., and Bustamante, C. (2000) Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500.

    Article  PubMed  CAS  Google Scholar 

  6. Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J., and Block, S. M. (2003) Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115, 437–447.

    Article  PubMed  CAS  Google Scholar 

  7. Shaevitz, J. W., Abbondanzieri, E. A., Landick, R., and Block, S. M. (2003) Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687.

    Article  PubMed  CAS  Google Scholar 

  8. Galburt, E. A., Grill, S. W., and Bustamante, C. (2009) Single molecule transcription elongation. Methods 48, 323–332.

    Article  PubMed  CAS  Google Scholar 

  9. Skinner, G. M., Baumann, C. G., Quinn, D. M., Molloy, J. E., and Hoggett, J. G. (2004) Promoter binding, initiation and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle. J. Biol. Chem. 279, 3239–3244.

    Google Scholar 

  10. Jia, Y. P., Kumar, A., and Patel, S. S. (1996) Equilibrium and stopped-flow kinetic studies of interaction between T7 RNA polymerase and its promoters measured by protein and 2-aminopurine fluorescence changes. J. Biol. Chem. 271, 30451–30458.

    Article  PubMed  CAS  Google Scholar 

  11. Chamberlin, M., and Ring, J. (1973) Characterization of T7-specific ribonucleic acid polymerase. I. General properties of the enzymatic reaction and the template specificity of the enzyme. J. Biol. Chem. 248, 2235–2244.

    Google Scholar 

  12. Stano, N. M., Levin, M. K., and Patel, S. S. (2002) The +2 NTP binding drives open complex formation in T7 RNA polymerase. J. Biol. Chem. 277, 37292–37300.

    Article  PubMed  CAS  Google Scholar 

  13. Veigel, C., Bartoo, M. L., White, D. C. S., Sparrow, J. C., and Molloy, J. E. (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438.

    Article  PubMed  CAS  Google Scholar 

  14. He, B., Rong, M., Lyakhov, D., Gartenstein, H., Diaz, G., Castagna, R., et al. (1997) Rapid mutagenesis and purification of phage RNA polymerases. Protein Expr. Purif. 9, 142–151.

    Article  PubMed  CAS  Google Scholar 

  15. Chamberlin, M. J., Nierman, W. C., Wiggs, J., and Neff, N. (1979) A quantitative assay for bacterial RNA polymerases. J. Biol. Chem. 254, 10061–10069.

    PubMed  CAS  Google Scholar 

  16. Bustamante, C., Marko, J. F., Siggia, E. D., and Smith, S. B. (1994) Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600.

    Article  PubMed  CAS  Google Scholar 

  17. Baumann, C. G., Smith, S. B., Bloomfield, V. A., and Bustamante, C. (1997) Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. USA 94, 6185–6190.

    Article  PubMed  CAS  Google Scholar 

  18. Martin, C. T., and Coleman, J. E. (1989) T7 RNA polymerase does not interact with the 5’-phosphate of the initiating nucleotide. Biochemistry 28, 2760–2762.

    Article  PubMed  CAS  Google Scholar 

  19. Fuller, D. N., Gemmen, G. J., Rickgauer, J. P., Dupont, A., Millin, R., Recouvreux, P., et al. (2006) A general method for manipulating DNA sequences from any organism with optical tweezers. Nucleic Acids Res. 34, e15.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M.L. Bartoo, J.G. Hoggett, J.E. Molloy, A.J. Noël, U. Seger, G.M. Skinner, R. Thieleczek, and C. Veigel for assistance with development of the single-molecule transcription assay, instrument modifications, or data analysis. This work was supported by the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph G. Baumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baumann, C.G., Cross, S.J. (2011). Probing the Mechanics of the Complete DNA Transcription Cycle in Real-Time Using Optical Tweezers. In: Mashanov, G., Batters, C. (eds) Single Molecule Enzymology. Methods in Molecular Biology, vol 778. Humana Press. https://doi.org/10.1007/978-1-61779-261-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-261-8_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-260-1

  • Online ISBN: 978-1-61779-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics