Skip to main content

Imaging Podosome Dynamics and Matrix Degradation

  • Protocol
  • First Online:
Cell Migration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 769))

Abstract

Invasive cell migration is critical for leukocyte trafficking into tissues. Podosomes are matrix-degrading adhesive structures that are formed by macrophages and are necessary for macrophage migration and invasion. Here, we describe methods for imaging and quantifying podosomes in primary human macrophages and in THP-1 cells, a monocyte cell line that can be differentiated to a macrophage-like state. Moreover, we outline detailed methods for live imaging of podosomes, which are highly dynamic, and for the quantification of rates of podosome turnover. Finally, we discuss methods for the quantitative analysis of matrix degradation on fluorescent-gelatin-coated cover slips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarone, G., Cirillo, D., Giancotti, F., Comoglio, P., and Marchisio, P. (1985) Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes., Exp Cell Res 159, 141–157.

    Article  PubMed  CAS  Google Scholar 

  2. Hai, C., Hahne, P., Harrington, E., and Gimona, M. (2002) Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells., Exp Cell Res 280, 64–74.

    Article  PubMed  CAS  Google Scholar 

  3. Lener, T., Burgstaller, G., Crimaldi, L., Lach, S., and Gimona, M. (2006) Matrix-degrading podosomes in smooth muscle cells., Eur J Cell Biol 85, 183–189.

    Article  PubMed  CAS  Google Scholar 

  4. Linder, S. (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation., Trends Cell Biol 17, 107–117.

    Article  PubMed  CAS  Google Scholar 

  5. Evans, J., Correia, I., Krasavina, O., Watson, N., and Matsudaira, P. (2003) Macrophage podosomes assemble at the leading lamella by growth and fragmentation., J Cell Biol 161, 697–705.

    Article  PubMed  CAS  Google Scholar 

  6. Linder, S., Nelson, D., Weiss, M., and Aepfelbacher, M. (1999) Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages., Proc Natl Acad Sci USA 96, 9648–9653.

    Article  PubMed  CAS  Google Scholar 

  7. Calle, Y., Antón, I., Thrasher, A., and Jones, G. (2008) WASP and WIP regulate podosomes in migrating leukocytes., J Microsc 231, 494–505.

    Article  PubMed  CAS  Google Scholar 

  8. Linder, S., and Aepfelbacher, M. (2003) Podosomes: adhesion hot-spots of invasive cells., Trends Cell Biol 13, 376–385.

    Article  PubMed  CAS  Google Scholar 

  9. Buccione, R., Orth, J., and McNiven, M. (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles., Nat Rev Mol Cell Biol 5, 647–657.

    Article  PubMed  CAS  Google Scholar 

  10. Ley, K., Laudanna, C., Cybulsky, M., and Nourshargh, S. (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated., Nat Rev Immunol 7, 678–689.

    Article  PubMed  CAS  Google Scholar 

  11. Carman, C., Sage, P., Sciuto, T., de la Fuente, M., Geha, R., Ochs, H., Dvorak, H., Dvorak, A., and Springer, T. (2007) Transcellular diapedesis is initiated by invasive podosomes., Immunity 26, 784–797.

    Article  PubMed  CAS  Google Scholar 

  12. Cougoule, C., Le Cabec, V., Poincloux, R., Al Saati, T., Mège, J., Tabouret, G., Lowell, C., Laviolette-Malirat, N., and Maridonneau-Parini, I. (2010) Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis., Blood 115, 1444–1452.

    Article  PubMed  CAS  Google Scholar 

  13. Jones, G., Zicha, D., Dunn, G., Blundell, M., and Thrasher, A. (2002) Restoration of podosomes and chemotaxis in Wiskott-Aldrich syndrome macrophages following induced expression of WASp., Int J Biochem Cell Biol 34, 806–815.

    Article  PubMed  CAS  Google Scholar 

  14. Dovas, A., Gevrey, J., Grossi, A., Park, H., Abou-Kheir, W., and Cox, D. (2009) Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages., J Cell Sci 122, 3873–3882.

    Article  PubMed  CAS  Google Scholar 

  15. Tsuboi, S. (2006) A complex of Wiskott-Aldrich syndrome protein with mammalian verprolins plays an important role in monocyte chemotaxis., J Immunol 176, 6576–6585.

    PubMed  CAS  Google Scholar 

  16. Svensson, H., West, M., Mollahan, P., Prescott, A., Zaru, R., and Watts, C. (2008) A role for ARF6 in dendritic cell podosome formation and migration., Eur J Immunol 38, 818–828.

    Article  PubMed  CAS  Google Scholar 

  17. Ochs, H., and Thrasher, A. (2006) The Wiskott-Aldrich syndrome., J Allergy Clin Immunol 117, 725–738; quiz 739.

    Google Scholar 

  18. Cortesio, C., Cooper, K., Wernimont, S., Kastner, D., and Huttenlocher, A. (2010) Impaired podosome formation and invasive migration of macrophages from patients with a PSTPIP1 mutation and PAPA syndrome., Arthritis Rheum.

    Google Scholar 

  19. Ruoslahti, E., Hayman, E., Pierschbacher, M., and Engvall, E. (1982) Fibronectin: purification, immunochemical properties, and biological activities., Methods Enzymol 82 Pt A, 803–831.

    Google Scholar 

  20. Tsuboi, S., Takada, H., Hara, T., Mochizuki, N., Funyu, T., Saitoh, H., Terayama, Y., Yamaya, K., Ohyama, C., Nonoyama, S., and Ochs, H. (2009) FBP17 Mediates a Common Molecular Step in the Formation of Podosomes and Phagocytic Cups in Macrophages., J Biol Chem 284, 8548–8556.

    Article  PubMed  CAS  Google Scholar 

  21. Dostert, C., Pétrilli, V., Van Bruggen, R., Steele, C., Mossman, B., and Tschopp, J. (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica., Science 320, 674–677.

    Article  PubMed  CAS  Google Scholar 

  22. Carrithers, M., Chatterjee, G., Carrithers, L., Offoha, R., Iheagwara, U., Rahner, C., Graham, M., and Waxman, S. (2009) Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A., J Biol Chem 284, 8114–8126.

    Article  PubMed  CAS  Google Scholar 

  23. Reiner, N. (2009) Methods in molecular biology. Macrophages and dendritic cells. Methods and protocols. Preface., Methods Mol Biol 531, v–vi.

    Google Scholar 

  24. Mosier, D. E. (2004) Introduction for “Safety Considerations for Retroviral Vectors: A Short Review”, pp 68–75, Applied Biological Safety Association, Applied Biosafety.

    Google Scholar 

  25. Zhang, X., Edwards, J., and Mosser, D. (2009) The expression of exogenous genes in macrophages: obstacles and opportunities., Methods Mol Biol 531, 123–143.

    Article  PubMed  CAS  Google Scholar 

  26. Riedl, J., Crevenna, A., Kessenbrock, K., Yu, J., Neukirchen, D., Bista, M., Bradke, F., Jenne, D., Holak, T., Werb, Z., Sixt, M., and Wedlich-Soldner, R. (2008) Lifeact: a versatile marker to visualize F-actin., Nat Methods 5, 605–607.

    Article  PubMed  CAS  Google Scholar 

  27. Schnoor, M., Buers, I., Sietmann, A., Brodde, M., Hofnagel, O., Robenek, H., and Lorkowski, S. (2009) Efficient non-viral transfection of THP-1 cells., J Immunol Methods 344, 109–115.

    Article  PubMed  CAS  Google Scholar 

  28. Calle, Y., Carragher, N., Thrasher, A., and Jones, G. (2006) Inhibition of calpain stabilises podosomes and impairs dendritic cell motility., J Cell Sci 119, 2375–2385.

    Article  PubMed  CAS  Google Scholar 

  29. Webb, D., Donais, K., Whitmore, L., Thomas, S., Turner, C., Parsons, J., and Horwitz, A. (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly., Nat Cell Biol 6, 154–161.

    Article  PubMed  CAS  Google Scholar 

  30. Chan, K., Cortesio, C., and Huttenlocher, A. (2007) Integrins in cell migration., Methods Enzymol 426, 47–67.

    Article  PubMed  CAS  Google Scholar 

  31. Zamir, E., Katz, B., Aota, S., Yamada, K., Geiger, B., and Kam, Z. (1999) Molecular diversity of cell-matrix adhesions., J Cell Sci 112 (Pt 11), 1655–1669.

    Google Scholar 

  32. Yamaguchi, H., Pixley, F., and Condeelis, J. (2006) Invadopodia and podosomes in tumor invasion., Eur J Cell Biol 85, 213–218.

    Article  PubMed  CAS  Google Scholar 

  33. Tu, C., Ortega-Cava, C., Chen, G., Fernandes, N., Cavallo-Medved, D., Sloane, B., Band, V., and Band, H. (2008) Lysosomal cathepsin B participates in the podosome-mediated ­extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts., Cancer Res 68, 9147–9156.

    Article  PubMed  CAS  Google Scholar 

  34. Mulari, M., Zhao, H., Lakkakorpi, P., and Väänänen, H. (2003) Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake., Traffic 4, 113–125.

    Article  PubMed  CAS  Google Scholar 

  35. Cougoule, C., Carréno, S., Castandet, J., Labrousse, A., Astarie-Dequeker, C., Poin­cloux, R., Le Cabec, V., and Maridonneau-Parini, I. (2005) Activation of the lysosome-­associated p61Hck isoform triggers the biogenesis of podosomes., Traffic 6, 682–694.

    Article  PubMed  CAS  Google Scholar 

  36. Artym, V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K., and Mueller, S. (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function., Cancer Res 66, 3034–3043.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Huttenlocher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Starnes, T.W., Cortesio, C.L., Huttenlocher, A. (2011). Imaging Podosome Dynamics and Matrix Degradation. In: Wells, C., Parsons, M. (eds) Cell Migration. Methods in Molecular Biology, vol 769. Humana Press. https://doi.org/10.1007/978-1-61779-207-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-207-6_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-206-9

  • Online ISBN: 978-1-61779-207-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics