Skip to main content

Molecular Biology and Genetic Engineering in Nitrogen Fixation

  • Protocol
  • First Online:
Nitrogen Fixation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 766))

Abstract

Biological nitrogen fixation is a complex and tightly regulated process limited to a group of prokaryotic species known as diazotrophs. Among well-studied diazotrophs, Azotobacter vinelandii is the best studied for its convenience of aerobic growth, its high levels of nitrogenase expression, and its genetic tractability. This chapter includes protocols and strategies in the molecular biology and genetic engineering of A. vinelandii that have been used as valuable tools for advancing studies on the biosynthesis, mechanism, and regulation of nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  PubMed  CAS  Google Scholar 

  2. Hu Y, Fay AW, Lee CC et al (2008) Assembly of nitrogenase MoFe protein. Biochemistry 47:3973–3981

    Article  PubMed  CAS  Google Scholar 

  3. Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  PubMed  CAS  Google Scholar 

  4. Jacobson MR, Brigle KE, Bennett LT et al (1989) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 171:1017–1027

    PubMed  CAS  Google Scholar 

  5. Jacobson MR, Cash VL, Weiss MC et al (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57

    Article  PubMed  CAS  Google Scholar 

  6. Imperial J, Ugalde RA, Shah VK et al (1984) Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae. J Bacteriol 158:187–194

    PubMed  CAS  Google Scholar 

  7. Mayer SM, Lawson DM, Gormal CA et al (1999) New insights into structure-function relationships in nitrogenase: a 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. J Mol Biol 292:871–891

    Article  PubMed  CAS  Google Scholar 

  8. Brill WJ (1980) Biochemical genetics of nitrogen fixation. Microbiol Rev 44:449–467

    PubMed  CAS  Google Scholar 

  9. Thorneley RNF, Eady RR (1973) Nitrogenase of Klebsiella pneumoniae: evidence for an adenosine triphosphate-induced association of the iron-sulphur protein. Biochem J 133:405–408.

    PubMed  CAS  Google Scholar 

  10. Thorneley RNF, Lowe DJ (1983) Nitrogenase of Klebsiella pneumoniae – kinetics of the dissociation of oxidized iron protein from molybdenum iron protein – identification of the rate-limiting step for substrate reduction. Biochem J 215:393–403

    PubMed  CAS  Google Scholar 

  11. Bolin JT, Ronco AE, Morgan TV et al (1993) The unusual metal clusters of nitrogenase: structural features revealed by x-ray anomalous diffraction studies of the MoFe protein from Clostridium pasteurianum. Proc Natl Acad Sci USA 90:1078–1082

    Article  PubMed  CAS  Google Scholar 

  12. Einsle O, Tezcan FA, Andrade SLA et al (2002) Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700

    Article  PubMed  CAS  Google Scholar 

  13. Schmid B, Ribbe MW, Einsle O et al (2002) Structure of a cofactor-deficient nitrogenase MoFe protein. Science 296:352–356

    Article  PubMed  CAS  Google Scholar 

  14. Curatti L, Brown CS, Ludden PW et al (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci USA 102:6291–6296

    Article  PubMed  CAS  Google Scholar 

  15. Esposito RG, Wilson PW (1958) Acetate as a calcium-sparing factor in nitrogen fixation by Azotobacter vinelandii. Proc Natl Acad Sci USA 44:472–476

    Article  PubMed  CAS  Google Scholar 

  16. Pena C, Campos N, Galindo E (1997) Changes in alginate molecular mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl Microbiol Biotechnol 48:510–515

    Article  CAS  Google Scholar 

  17. Fallik E, Hartel PG, Robson RL (1993) Presence of a vanadium nitrogenase in Azotobacter paspali. Appl Environ Microbiol 59:1883–1886

    PubMed  CAS  Google Scholar 

  18. Kennedy C, Rudnick P, MacDonald ML et al (2005) Genus III. Azotobacter Beijerinck 1901, 567al. In: Brenner DJ, Noel RK, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology – The Proteobacteria, pp. 384–402. Springer, New York, NY

    Google Scholar 

  19. Mayer SM, Dos Santos PC, Seefeldt LC et al (2002) Use of short-chain alkynes to locate the nitrogenase catalytic site. In: Leigh GJ (ed) Nitrogen Fixation at the Millennium, pp. 137–154. Elsevier Science, Brighton, UK

    Chapter  Google Scholar 

  20. Chen YP, Lopezdevictoria G, Lovell CR (1993) Utilization of aromatic-compounds as carbon and energy-sources during growth and N-2-fixation by free-living nitrogen-fixing bacteria. Arch Microbiol 159:207–212

    Article  CAS  Google Scholar 

  21. Upchurch RG, Mortenson LE (1980) In vivo energetics and control of nitrogen fixation: changes in the adenylate energy charge and adenosine 5'-diphosphate/adenosine 5'- triphosphate ratio of cells during growth on dinitrogen versus growth on ammonia. J Bacteriol 143:274–284

    PubMed  CAS  Google Scholar 

  22. Shah VK, Davis LC, Brill WJ (1972) Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii. Biochim Biophys Acta 256:498–511

    Article  PubMed  CAS  Google Scholar 

  23. Christiansen J, Goodwin PJ, Lanzilotta WN et al (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37:12611–12623

    Article  PubMed  CAS  Google Scholar 

  24. Goodwin PJ, Agar JN, Roll JT et al (1998) The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 37:10420–10428

    Article  PubMed  CAS  Google Scholar 

  25. Page WJ, von Tigerstrom M (1979) Optimal conditions for the transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061

    PubMed  Google Scholar 

  26. Bishop PE, Premakumar R, Dean DR et al (1986) Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92–94

    Article  PubMed  CAS  Google Scholar 

  27. Bush JA, Wilson PW (1959) A non-gummy chromogenic strain of Azotobacter vinelandii. Nature 184:381–384

    Article  Google Scholar 

  28. Kennedy C, Bishop PE (2004) Genetics of nitrogen fixation and related aspects of metabolism in species of Azotobacter: history and current status. In: Klipp W, Masepohl B, Gallon JR, Newton WE (eds) Genetics and Regulation of Nitrogen Fixation in Free-Living Bacteria, pp. 27–44. Kluwer, Dordrecht

    Google Scholar 

  29. Martinez-Salazar JM, Moreno S, Najera R et al (1996) Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178:1800–1808

    PubMed  CAS  Google Scholar 

  30. Setubal JC, Dos Santos P, Goldman BS et al (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545

    Article  PubMed  CAS  Google Scholar 

  31. Page W, von Tigerstrom M (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061

    PubMed  CAS  Google Scholar 

  32. Page WJ, Grant GA (1987) Effect of mineral iron on the development of transformation competence in Azotobacter vinelandii. Fems Microbiol Lett 41:257–261

    Article  CAS  Google Scholar 

  33. Doran JL, Page WJ (1983) Heat sensitivity of Azotobacter vinelandii genetic transformation. J Bacteriol 155:159–168

    PubMed  CAS  Google Scholar 

  34. Venkatesh TV, Reddy MA, Das HK (1990) Cloning and characterization of the Azotobacter vinelandii recA gene and construction of a recA deletion mutant. Mol Gen Genet 224:482–486

    Article  PubMed  CAS  Google Scholar 

  35. Johnson DC, Unciuleac MC, Dean DR (2006) Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol 188:7551–7561

    Article  PubMed  CAS  Google Scholar 

  36. Kennedy C, Gamal R, Humphrey R et al (1986) The nifH, nifM and nifN genes of Azotobcater vinelandii: characterisation by Tn5 mutagenesis and isolation from pLAFR1 gene banks. Mol Gen Genet 205:318–325

    Article  CAS  Google Scholar 

  37. Wu G, Hill S, Kelly MJ et al (1997) The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an Fnr- like protein. Microbiology 143:2197–2207

    Article  PubMed  CAS  Google Scholar 

  38. Contreras A, Maldonado R, Casadesus J (1991) Tn5 mutagenesis and insertion replacement in Azotobacter vinelandii. Plasmid 25:76–80

    Article  PubMed  CAS  Google Scholar 

  39. Brigle KE, Setterquist RA, Dean DR et al (1987) Site-directed mutagenesis of the nitrogenase MoFe protein of Azotobacter vinelandii. Proc Natl Acad Sci USA 84:7066–7069

    Article  PubMed  CAS  Google Scholar 

  40. Dos Santos PC, Johnson DC, Ragle BE et al (2007) Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J Bacteriol 189:2854–2862

    Article  PubMed  CAS  Google Scholar 

  41. Robinson AC, Dean DR, Burgess BK (1987) Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J Biol Chem 262:14327–14332

    PubMed  CAS  Google Scholar 

  42. Walmsley J, Toukdarian A, Kennedy C (1994) The role of regulatory genes nifA, vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three nitrogenases of Azotobacter vinelandii. Arch Microbiol 162:422–429

    Article  PubMed  CAS  Google Scholar 

  43. Premakumar R, Loveless TM, Bishop PE (1994) Effect of amino acid substitutions in a potential metal-binding site of AnfA on expression from the anfH promoter in Azotobacter vinelandii. J Bacteriol 176:6139–6142

    PubMed  CAS  Google Scholar 

  44. Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  45. Christiansen J, Cash VL, Seefeldt LC et al (2000) Isolation and characterization of an acetylene-resistant nitrogenase. J Biol Chem 275:11459–11464

    Article  PubMed  CAS  Google Scholar 

  46. Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874

    Article  PubMed  CAS  Google Scholar 

  47. Fang FC, Helinski DR (1991) Broad-host-range properties of plasmid RK2: importance of overlapping genes encoding the plasmid replication initiation protein TrfA. J Bacteriol 173: 5861–5868

    PubMed  CAS  Google Scholar 

  48. Peralta-Gil M, Segura D, Guzman J et al (2002) Expression of the Azotobacter vinelandii poly-beta-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 184:5672–5677

    Article  PubMed  CAS  Google Scholar 

  49. Kelly MJ, Poole RK, Yates MG et al (1990) Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia C. Dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dos Santos, P.C. (2011). Molecular Biology and Genetic Engineering in Nitrogen Fixation. In: Ribbe, M. (eds) Nitrogen Fixation. Methods in Molecular Biology, vol 766. Humana Press. https://doi.org/10.1007/978-1-61779-194-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-194-9_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-193-2

  • Online ISBN: 978-1-61779-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics