Skip to main content

Mössbauer Spectroscopy

  • Protocol
  • First Online:
Nitrogen Fixation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 766))

Abstract

Mössbauer spectroscopy has contributed significantly to the studies of Fe-containing proteins. Early applications yielded detailed electronic characterizations of hemeproteins, and thus enhanced our understanding of the chemical properties of this important class of proteins. The next stage of the applications was marked by major discoveries of several novel Fe clusters of complex structures, including the 8Fe7S P cluster and the mixed metal 1Mo7Fe M center in nitrogenase. Since early 1990 s, rapid kinetic techniques have been used to arrest enzymatic reactions for Mössbauer studies. A number of reaction intermediates were discovered and characterized, both spectroscopically and kinetically, providing unprecedented detailed molecular-level mechanistic information. This chapter gives a brief summary of the historical accounts and a concise description of some experimental and theoretical elements in Mössbauer spectroscopy that are essential for understanding Mössbauer spectra. Major biological applications are summarized at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mössbauer RL (1958) Kernresonanzfluoreszenz von gammastrahlung in Ir-191. Zeitschrift Für Physik 151:124–143

    Article  Google Scholar 

  2. Schunemann V, Winkler H (2000) Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep Prog Phys 63:263–353

    Article  CAS  Google Scholar 

  3. Huynh BH, Kent TA (1984) Mössbauer studies of iron proteins. In: Eichhorn GL, Marzilli LG (eds) Advances in Inorganic Biochemistry, vol. 6, pp. 164–223. Elsevier, Amsterdam

    Google Scholar 

  4. Lang G, Marshall W (1966) Mössbauer effect in some haemoglobin compounds. Proc Phys Soc London 87:3–34

    Article  CAS  Google Scholar 

  5. Debrunner PG (1983) Mössbauer spectroscopy of iron porphyrins. In: Lever ABP, Gray HB (eds) Iron Porphyrins, Part III, pp. 137–234. VCH Publishers, New York, NY

    Google Scholar 

  6. Sands RH, Dunham WR (1974) Spectroscopic studies on 2-iron ferredoxins. Quart Rev Biophys 7:443–504

    Article  CAS  Google Scholar 

  7. Trautwein AX, Bill E, Bominaar EL et al (1991) Iron-containing proteins and related analogs – complementary Mössbauer, EPR and magnetic-susceptibility studies. Struct Bond 78:1–95

    CAS  Google Scholar 

  8. Münck E, Rhodes H, Orme-Johnson WH et al (1975) Nitrogenase .8. Mössbauer and EPR spectroscopy – MoFe protein component from Azotobacter-vinelandii OP. Biochim Biophys Acta 400:32–53

    PubMed  Google Scholar 

  9. Rawlings J, Shah VK, Chisnell JR et al (1978) Novel metal cluster in iron-molybdenum cofactor of nitrogenase – spectroscopic evidence. J Biol Chem 253:1001–1004

    PubMed  CAS  Google Scholar 

  10. Zimmermann R, Orme-Johnson WH, Münck E et al (1978) Nitrogenase-X – Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter-vinelandii OP – Nature of iron centers. Biochim Biophys Acta 537:185–207

    PubMed  CAS  Google Scholar 

  11. Emptage MH, Kent TA, Huynh BH et al (1980) Nature of the iron-sulfur centers in a ferredoxin from Azotobacter vinelandii – Mössbauer studies and cluster displacement experiments. J Biol Chem 255:1793–1796

    PubMed  CAS  Google Scholar 

  12. Huynh BH, Moura JJG, Moura I et al (1980) Evidence for a three iron center in a ferredoxin from Desulfovibrio gigas. J Biol Chem 255:3242–3244

    PubMed  CAS  Google Scholar 

  13. Kent TA, Dreyer JL, Kennedy MC et al (1982) Mössbauer studies of beef-heart aconitase – Evidence for facile interconversions of iron-sulfur clusters. Proc Natl Acad Sci USA 79:1096–1100

    Article  PubMed  CAS  Google Scholar 

  14. Moura JJG, Moura I, Kent TA et al (1982) Interconversions of [3Fe-3S] and [4Fe-4S] clusters – Mössbauer and electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin II. J Biol Chem 257:6259–6267

    PubMed  CAS  Google Scholar 

  15. Christner JA, Münck E, Janick PA et al (1981) Mössbauer spectroscopic studies of Escherichia coli sulfite reductase – evidence for coupling between the siroheme and Fe4S4 cluster prosthetic groups. J Biol Chem 256:2098–2101

    PubMed  CAS  Google Scholar 

  16. Huynh BH, Kang L, Dervartanian DV et al (1984) Characterization of a sulfite reductase from Desulfovibrio vulgaris – Evidence for the presence of a low-spin siroheme and an exchange-coupled siroheme-[4Fe-4S] unit. J Biol Chem 259:5373–5376

    Google Scholar 

  17. Noodleman L, Case DA (1992) Density-functional theory of spin polarization and spin coupling in iron-sulfur clusters. Adv Inorg Chem 38:423–487

    Article  CAS  Google Scholar 

  18. Blondin G, Bominaar EL, Girerd JJ et al (1995) Spin dependent electron delocalization, vibronic and antiferromagnetic couplings in iron sulfur clusters. In: LaMar GN (ed) Nuclear Magnetic Resonance of Paramagnetic Macromolecules, vol. 457, pp. 369–386. Kluwer, Dordrecht

    Google Scholar 

  19. Krebs C, Edmondson DE, Huynh BH (2002) Demonstration of peroxodiferric intermediate in M-ferritin ferroxidase reaction using rapid freeze-quench Mössbauer, resonance Raman, and XAS spectroscopies. Methods Enzymol 354:436–454

    Article  PubMed  CAS  Google Scholar 

  20. Bollinger JM, Edmondson DE, Huynh BH et al (1991) Mechanism of assembly of the tyrosyl radical dinuclear iron cluster cofactor of ribonucleotide reductase. Science 253:292–298

    Article  PubMed  CAS  Google Scholar 

  21. Bollinger JM, Tong WH, Ravi N et al (1994) Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli ribonucleotide reductase. 2. Kinetics of the excess Fe2+ reaction by optical, EPR and Mössbauer spectroscopies. J Am Chem Soc 116:8015–8023

    Article  CAS  Google Scholar 

  22. Ravi N, Bollinger JM, Huynh BH et al (1994) Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli ribonucleotide reductase. 1. Mössbauer characterization of the diferric radical precursor. J Am Chem Soc 116:8007–8014

    Article  CAS  Google Scholar 

  23. Liu KE, Valentine AM, Wang DL et al (1995) Kinetic and spectroscopic characterization of intermediates and component interactions of methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 117:10174–10185

    Article  CAS  Google Scholar 

  24. Pereira AS, Small W, Krebs C et al (1998) Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Biochemistry 37:9871–9876

    Article  PubMed  CAS  Google Scholar 

  25. Price JC, Barr EW, Glass TE et al (2003) Evidence for hydrogen abstraction from C1 of taurine by the high-spin Fe(IV) intermediate detected during oxygen activation by taurine: alpha-ketoglutarate dioxygenase (TauD). J Am Chem Soc 125:13008–13009

    Article  PubMed  CAS  Google Scholar 

  26. Price JC, Barr EW, Tirupati B et al (2003) The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: A high-spin Fe(IV) complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 42:7497–7508

    Article  PubMed  CAS  Google Scholar 

  27. Xing G, Diao YH, Hoffart LM et al (2006) Evidence for C-H cleavage by an iron-superoxide complex in the glycol cleavage reaction catalyzed by myo-inositol oxygenase. Proc Natl Acad Sci USA 103:6130–6135

    Article  PubMed  CAS  Google Scholar 

  28. Murray LJ, Naik SG, Ortillo DO et al (2007) Characterization of the arene-oxidizing intermediate in ToMOH as a diiron(III) species. J Am Chem Soc 129:14500–14510

    Article  PubMed  CAS  Google Scholar 

  29. Jiang W, Yun D, Saleh L et al (2007) A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science 316:1188–1191

    Article  PubMed  CAS  Google Scholar 

  30. Bollinger JM, Stubbe J, Huynh BH et al (1991) Novel diferric radical intermediate responsible for tyrosyl radical formation in assembly of the cofactor of ribonucleotide reductase. J Am Chem Soc 113:6289–6291

    Article  CAS  Google Scholar 

  31. Murray LJ, Garcia-Serres R, Naik S et al (2006) Dioxygen activation at non-heme diiron centers: Characterization of intermediates in a mutant form of toluene/o-xylene monooxygenase hydroxylase. J Am Chem Soc 128:7458–7459

    Article  PubMed  CAS  Google Scholar 

  32. Hwang J, Krebs C, Huynh BH et al (2000) A short Fe-Fe distance in peroxodiferric ferritin: Control of Fe substrate versus cofactor decay? Science 287:122–125

    Article  PubMed  CAS  Google Scholar 

  33. Moenne-Loccoz P, Krebs C, Herlihy K et al (1999) The ferroxidase reaction of ferritin reveals a diferric mu-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins. Biochemistry 38:5290–5295

    Article  PubMed  CAS  Google Scholar 

  34. Liu KE, Wang DL, Huynh BH et al (1994) Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath). J Am Chem Soc 116:7465–7466

    Article  CAS  Google Scholar 

  35. Lee SK, Fox BG, Froland WA et al (1993) A transient intermediate of the Methane monooxygenase catalytic cycle containing an Fe(IV)Fe(IV) cluster. J Am Chem Soc 115:6450–6451

    Article  CAS  Google Scholar 

  36. Baldwin J, Voegtli WC, Khidekel N et al (2001) Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase. J Am Chem Soc 123:7017–7030

    Article  PubMed  CAS  Google Scholar 

  37. Bollinger JM, Krebs C, Vicol A et al (1998) Engineering the diiron site of Escherichia coli ribonucleotide reductase protein R2 to accumulate an intermediate similar to H-peroxo, the putative peroxodiiron(III) complex from the methane monooxygenase catalytic cycle. J Am Chem Soc 120:1094–1095

    Article  CAS  Google Scholar 

  38. Smith BE, Lang G (1974) Mössbauer spectroscopy of nitrogenase proteins from Klebsiella pneumoniae – Structural assignments and mechanistic conclusions. Biochem J 137:169–180

    PubMed  CAS  Google Scholar 

  39. Huynh BH, Münck E, Orme-Johnson WH (1979) Nitrogenase-XI – Mössbauer studies of the cofactor centers of the MoFe protein from Azotobacter vinelandii-OP. Biochim Biophys Acta 576:192–203

    PubMed  CAS  Google Scholar 

  40. Huynh BH, Henzl MT, Christner JA et al (1980) Nitrogenase.12. Mössbauer studies of the MoFe protein from Clostridium pasteurianum W5. Biochim Biophys Acta 623:124–138

    PubMed  CAS  Google Scholar 

  41. Chan MK, Kim JS, Rees DC (1993) The nitrogenase FeMo cofactor and P cluster pair – 2.2-angstrom resolution structures. Science 260:792–794

    Article  PubMed  CAS  Google Scholar 

  42. Peters JW, Stowell MHB, Soltis SM et al (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36:1181–1187

    Article  PubMed  CAS  Google Scholar 

  43. Einsle O, Tezcan FA, Andrade SLA et al (2002) Nitrogenase MoFe-protein at 1.16 angstrom resolution: A central ligand in the FeMo-cofactor. Science 297:1696–1700

    Article  PubMed  CAS  Google Scholar 

  44. Shah VK, Brill WJ (1977) Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci USA 74:3249–3253

    Article  PubMed  CAS  Google Scholar 

  45. Yoo SJ, Angove HC, Papaefthymiou V et al (2000) Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective Fe-57 enrichment of the M-centers. J Am Chem Soc 122:4926–4936

    Article  CAS  Google Scholar 

  46. Lindahl PA, Papaefthymiou V, Orme-Johnson WH et al (1988) Mössbauer studies of solid thionine-oxidized MoFe protein of nitrogenase. J Biol Chem 263:19412–19418

    PubMed  CAS  Google Scholar 

  47. Surerus KK, Hendrich MP, Christie PD et al (1992) Mössbauer and integer-spin EPR of the oxidized P-cluster of nitrogenase – POX is a non-Kramers system with a nearly degenerate ground doublet. J Am Chem Soc 114:8579–8590

    Article  CAS  Google Scholar 

  48. Emptage MH, Zimmermann R, Que L et al (1977) Mössbauer studies of cytochrome C ’ from Rhodospirillum rubrum. Biochim Biophys Acta 495:12–23

    PubMed  CAS  Google Scholar 

  49. Huynh BH, Patil DS, Moura I et al (1987) On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas – Mössbauer and redox titration studies. J Biol Chem 262:795–800

    PubMed  CAS  Google Scholar 

  50. Krebs C, Broderick WE, Henshaw TF et al (2002) Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: A Mössbauer spectroscopic study. J Am Chem Soc 124:912–913

    Article  PubMed  CAS  Google Scholar 

  51. Krebs C, Price JC, Baldwin J et al (2005) Rapid freeze-quench Fe-57 Mössbauer spectroscopy: Monitoring changes of an iron-containing active site during a biochemical reaction. Inorg Chem 44:742–757

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Serres R, Davydov RM, Matsui T et al (2007) Distinct reaction pathways followed upon reduction of oxy-heme oxygenase and oxy-myoglobin as characterized by Mössbauer spectroscopy. J Am Chem Soc 129:6662–6662

    Google Scholar 

  53. Krebs C, Chen SX, Baldwin J et al (2000) Mechanism of rapid electron transfer during oxygen activation in the R2 subunit of Escherichia coli ribonucleotide reductase. 2. Evidence for and consequences of blocked electron transfer in the W48F variant. J Am Chem Soc 122:12207–12219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boi Hanh Huynh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huynh, B.H. (2011). Mössbauer Spectroscopy. In: Ribbe, M. (eds) Nitrogen Fixation. Methods in Molecular Biology, vol 766. Humana Press. https://doi.org/10.1007/978-1-61779-194-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-194-9_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-193-2

  • Online ISBN: 978-1-61779-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics