Skip to main content

X-Ray Absorption Spectroscopy

  • Protocol
  • First Online:
Nitrogen Fixation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 766))

Abstract

X-ray absorption spectroscopy (XAS) involves the excitation of core electrons to bound states localized on the photoabsorber and the eventual excitation of the photoelectron to the continuum. The resulting spectra are typically divided into two regions: (1) the edge region which provides electronic structure information and (2) the extended X-ray absorption fine structure (EXAFS) region, which provides information about the distance, number, and type of ligands. Here, a basic introduction to XAS theory, the information that can be obtained, and the experimental consideration are presented. The application of XAS to biological systems and the impact this has had on nitrogenase research are briefly highlighted. New experimental advances are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shu LJ, Nesheim JC, Kauffmann K et al (1997) An (Fe2O2) diamond core structure for the key intermediate Q of methane monooxygenase. Science 275:515–518

    Article  PubMed  CAS  Google Scholar 

  2. Burdi D, Willems JP, Riggs-Gelasco P et al (1998) The core structure of X generated in the assembly of the diiron cluster of ribonucleotide reductase: O-17(2) and (H2O)-O-17 ENDOR. J Am Chem Soc 120:12910–12919

    Article  CAS  Google Scholar 

  3. Stone KL, Behan RK, Green MT (2005) X-ray absorption spectroscopy of chloroperoxidase compound I: Insight into the reactive intermediate of P450 chemistry. Proc Natl Acad Sci USA 102:16563–16565

    Article  PubMed  CAS  Google Scholar 

  4. Lee SK, DeBeer George S, Antholine WE et al (2002) Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J Am Chem Soc 124:6180–6193

    Article  PubMed  CAS  Google Scholar 

  5. Yano J, Kern J, Sauer K et al (2006) Where water is oxidized to dioxygen: Structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Article  PubMed  CAS  Google Scholar 

  6. Yano J, Kern J, Irrgang KD et al (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: A case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052

    Article  PubMed  CAS  Google Scholar 

  7. Wolff TE, Berg JM, Warrick C et al (1978) Molybdenum-iron-sulfur cluster complex [Mo2Fe6S9(SC2H5)8]3- - Synthetic approach to molybdenum site in nitrogenase. J Am Chem Soc 100:4629–4632

    Article  Google Scholar 

  8. Koningsberger DC, Prins R (1988) X-Ray Absorption, Principles, Applications Techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, NY

    Google Scholar 

  9. Scott RA (2000) X-ray absorption spectroscopy. In: Que L Jr (ed) Physical Methods in Bioinorganic Chemistry, pp. 465–503. University Science Books, Sausalito, CA

    Google Scholar 

  10. DeBeer George S, Neese F (2010) Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra. Inorg Chem 49:1849–1853

    Article  PubMed  CAS  Google Scholar 

  11. DeBeer George S, Petrenko T, Neese F (2008) Prediction of iron K-edge absorption spectra using time-dependent density functional theory. J Phys Chem A 112:12936–12943

    Article  PubMed  CAS  Google Scholar 

  12. Ankudinov AL, Ravel B, Rehr JJ et al (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58:7565–7576

    Article  CAS  Google Scholar 

  13. Ankudinov A, Conradson S, Rehr JJ (1997) Self-consistent calculations of XANES in Pu hydrates. Abstr Pap Am Chem S 214:52-GEOC

    Google Scholar 

  14. Filipponi A, Dicicco A, Tyson TA et al (1991) Ab initio modeling of X-ray absorption-spectra. Solid State Commun 78:265–268

    Article  CAS  Google Scholar 

  15. Cramer SP, Hodgson KO, Gillum WO et al (1978) Molybdenum site of nitrogenase – preliminary structural evidence from x-ray absorption spectroscopy. J Am Chem Soc 100:3398–3407

    Article  CAS  Google Scholar 

  16. Musgrave KB, Angove HC, Burgess BK et al (1998) All-ferrous titanium(III) citrate reduced Fe protein of nitrogenase: An XAS study of electronic and metrical structure. J Am Chem Soc 120:5325–5326

    Article  CAS  Google Scholar 

  17. Corbett MC, Hu YL, Fay AW et al (2006) Structural insights into a protein-bound iron-molybdenum cofactor precursor. Proc Natl Acad Sci USA 103:1238–1243

    Article  PubMed  CAS  Google Scholar 

  18. George SJ, Igarashi RY, Xiao Y et al (2008) Extended X-ray absorption fine structure and nuclear resonance vibrational spectroscopy reveal that NifB-co, a FeMo-co precursor, comprises a 6Fe core with an interstitial light atom. J Am Chem Soc 130:5673–5680

    Article  PubMed  CAS  Google Scholar 

  19. Einsle O, Tezcan FA, Andrade SLA et al (2002) Nitrogenase MoFe-protein at 1.16 angstrom resolution: A central ligand in the FeMo-cofactor. Science 297:1696–1700

    Article  PubMed  CAS  Google Scholar 

  20. Glatzel P, Bergmann U (2005) High resolution 1਀s core hole X-ray spectroscopy in 3d transition metal complexes – electronic and structural information. Coord Chem Rev 249:65–95

    Article  CAS  Google Scholar 

  21. Einsle O, Andrade SLA, Dobbek H et al (2007) Assignment of individual metal redox states in a metalloprotein by crystallographic refinement at multiple X-ray wavelengths. J Am Chem Soc 129:2210

    Article  PubMed  CAS  Google Scholar 

  22. Corbett MC, Latimer MJ, Poulos TL et al (2007) Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation. Acta Crystallogr D 63:951–960

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Martha A. Beckwith for helpful comments on this chapter and Cornell University for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena DeBeer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

DeBeer, S. (2011). X-Ray Absorption Spectroscopy. In: Ribbe, M. (eds) Nitrogen Fixation. Methods in Molecular Biology, vol 766. Humana Press. https://doi.org/10.1007/978-1-61779-194-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-194-9_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-193-2

  • Online ISBN: 978-1-61779-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics