Skip to main content

Studying Adaptation and Homeostatic Behaviors of Kinetic Networks by Using MATLAB

  • Protocol
  • First Online:
Yeast Genetic Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 734))

  • 1136 Accesses

Abstract

Organisms have the ability to counteract environmental perturbations and keep certain components within a cell homeostatically regulated. Closely related to homeostasis is the behavior of perfect adaptation where an organism responds to a step-wise perturbation by regulating some of its components, after a transient period, to their original pre-perturbation values. A particular interesting type of model relates to the so-called robust behavior where the homeostatic or perfect adaptation property is independent of the magnitude of the applied step-wise perturbation. It has been shown that this type of behavior is related to the control-theoretic concept of integral feedback (or integral control). Using downloadable MATLAB examples, we demonstrate how robust perfect adaptation sites can be identified in reaction kinetic networks by linearizing the system, applying the Laplace transform and inspecting the transfer function. We also show how the homeostatic set point in perfect adaptation is related to the presence of zero-order fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grylls, F. S., and J. S. Harrison, 1956. Adaptation of yeast to maltose fermentation. Nature 178, 1471–2.

    Article  PubMed  CAS  Google Scholar 

  2. Berg, H. C., and P. M. Tedesco, 1975. Transient response to chemotactic stimuli in Escherichia coli. Proc Natl Acad Sci U S A 72, 3235–9.

    Article  PubMed  CAS  Google Scholar 

  3. Alon, U., M. G. Surette, N. Barkai, and S. Leibler, 1999. Robustness in bacterial chemotaxis. Nature 397, 168–71.

    Article  PubMed  CAS  Google Scholar 

  4. Bray, D., 2002. Bacterial chemotaxis and the question of gain. Proc Natl Acad Sci U S A 99, 7–9.

    PubMed  CAS  Google Scholar 

  5. Mello, B. A., and Y. Tu, 2003. Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys J 84, 2943–56.

    Article  PubMed  CAS  Google Scholar 

  6. Berg, H. C., 2004. E. coli in Motion. Springer-Verlag, New York.

    Google Scholar 

  7. Mello, B. A., and Y. Tu, 2007. Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis. Biophys J 92, 2329–37.

    Article  PubMed  CAS  Google Scholar 

  8. Hansen, C. H., R. G. Endres, and N. S. Wingreen, 2008. Chemotaxis in Escherichia coli : A Molecular Model for Robust Precise Adaptation. PLoS Computational Biology 4, 0014–0027.

    Article  CAS  Google Scholar 

  9. Levchenko, A., and P. A. Iglesias, 2002. Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82, 50–63.

    Article  PubMed  CAS  Google Scholar 

  10. Ratliff, F., H. K. Hartline, and W. H. Miller, 1963. Spatial and temporal aspects of retinal inhibitory interaction. J Opt Soc Am 53, 110–20.

    Article  PubMed  CAS  Google Scholar 

  11. He, Q., and Y. Liu, 2005. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19, 2888–99.

    Article  PubMed  CAS  Google Scholar 

  12. Walters, R. G., 2005. Towards an understanding of photosynthetic acclimation. J Exp Bot 56, 435–47.

    Article  PubMed  CAS  Google Scholar 

  13. Arthur, H., and K. Watson, 1976. Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol 128, 56–68.

    PubMed  CAS  Google Scholar 

  14. Margesin, R., 2009. Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13, 257–62.

    Article  PubMed  Google Scholar 

  15. Asthagiri, A. R., and D. A. Lauffenburger, 2000. Bioengineering models of cell signaling. Annu Rev Biomed Eng 2, 31–53.

    Article  PubMed  CAS  Google Scholar 

  16. Koshland, J., D. E., A. Goldbeter, and J. B. Stock, 1982. Amplification and adaptation in regulatory and sensory systems. Science 217, 220–5.

    Google Scholar 

  17. Muzzey, D., C. A. Gomez-Uribe, J. T. Mettetal, and A. van Oudenaarden, 2009. A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138, 160–71.

    Article  PubMed  CAS  Google Scholar 

  18. Asthagiri, A. R., C. M. Nelson, A. F. Horwitz, and D. A. Lauffenburger, 1999. Quantitative relationship among integrin-ligand binding,adhesion, and signaling via focal adhesion kinase and extracellularsignal-regulated kinase 2. J Biol Chem 274, 27119–27.

    Article  PubMed  CAS  Google Scholar 

  19. Hao, N., M. Behar, T. C. Elston, and H. G. Dohlman, 2007. Systems biology analysis of G protein and MAP kinase signaling in yeast. Oncogene 26, 3254–66.

    Article  PubMed  CAS  Google Scholar 

  20. Mettetal, J. T., D. Muzzey, C. Gomez-Uribe, and A. van Oudenaarden, 2008. The Frequency Dependence of Osmo-Adaptation in Saccha- romyces cerevisiae. Science 319, 482–4.

    Article  PubMed  CAS  Google Scholar 

  21. Hong, C. I., E. D. Conrad, and J. J. Tyson, 2007. A proposal for robust temperature compensation of circadian rhythms. Proc Natl Acad Sci U S A 104, 1195–200.

    Article  PubMed  CAS  Google Scholar 

  22. Yi, T. M., Y. Huang, M. I. Simon, and J. Doyle, 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A 97, 4649–53.

    Article  PubMed  CAS  Google Scholar 

  23. Wilkie, J., M. Johnson, and K. Reza, 2002. Control Engineering. An Introductory Course. Palgrave, New York.

    Google Scholar 

  24. Drengstig, T., H. R. Ueda, and P. Ruoff, 2008. Predicting Perfect Adaptation Motifs in Reaction Kinetic Networks. J Phys Chem B 112, 16752–16758.

    Article  PubMed  CAS  Google Scholar 

  25. Ni, X. Y., T. Drengstig, and P. Ruoff, 2009. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation. Biophys J 97, 1244–53.

    Article  PubMed  CAS  Google Scholar 

  26. Kacser, H., and J. A. Burns, 1979. Molecular democracy: who shares the controls? Biochem Soc Trans 7, 1149–60.

    PubMed  CAS  Google Scholar 

  27. Burns, J. A., A. Cornish-Bowden, A. K. Groen, R. Heinrich, H. Kacser, J. W. Porteous, S. M. Rapoport, T. A. Rapoport, J. W. Stucki, J. M. Tager, R. J. A. Wanders, and H. V. Westerhoff, 1985. Control analysis of metabolic systems. Trends Biochem Sci 19, 16.

    Article  Google Scholar 

  28. Heinrich, R., and S. Schuster, 1996. The Regulation of Cellular Systems. Chapman and Hall, New York.

    Google Scholar 

  29. Fell, D., 1997. Understanding the Control of Metabolism. Portland Press, London and Miami.

    Google Scholar 

  30. Drengstig, T., T. Kjosmoen, and P. Ruoff. On the Relationships between Sensitivity Coefficients and Transfer Functions in Reaction Kinetic Networks. To be published.

    Google Scholar 

  31. Lutkepohl, H., 1996. Handbook of matrices. John Wiley & Sons.

    Google Scholar 

  32. Ingalls, B. P., 2004. A Frequency Domain Approach to Sensitivity Analysis of Biochemical Networks. J. Phys. Chem. B 108, 1143–1152.

    Article  CAS  Google Scholar 

  33. Beckskei, A., and L. Serrano, 2000. Engineering stability in gene networks by autoregulation. Nature 405, 261–74.

    Google Scholar 

  34. Lahav, G., N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A. J. Levine, M. B. Elowitz, and U. Alon, 2004. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36, 147–50.

    Article  PubMed  CAS  Google Scholar 

  35. Geva-Zatorsky, N., N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel, T. Yarnitzky, Y. Liron, P. Polak, G. Lahav, and U. Alon, 2006. Oscillations and variability in the p53 system. Mol Syst Biol 2, 2006 0033.

    PubMed  Google Scholar 

  36. Jolma, I. W., X. Y. Ni, L. Rensing, and P. Ruoff, 2010. Harmonic Oscillations in Homeostatic Controllers: Dynamics of the p53 Regulatory System. Biophys J 98, 743–752.

    Article  PubMed  CAS  Google Scholar 

  37. Toettcher, J. E., C. Mock, E. Batchelor, A. Loewer, and G. Lahav, 2010. A synthetic-natural hybrid oscillator in human cells. Proc Natl Acad Sci U S A 107, 17047–52.

    Article  PubMed  CAS  Google Scholar 

  38. Chadwick, D. J., and J. A. Goode, 2000. Mechanisms and Biological Significance of Pulsatile Hormone Secretion. Wiley, New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ruoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Drengstig, T., Kjosmoen, T., Ruoff, P. (2011). Studying Adaptation and Homeostatic Behaviors of Kinetic Networks by Using MATLAB. In: Becskei, A. (eds) Yeast Genetic Networks. Methods in Molecular Biology, vol 734. Humana Press. https://doi.org/10.1007/978-1-61779-086-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-086-7_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-085-0

  • Online ISBN: 978-1-61779-086-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics