Skip to main content

Evolutionary Aspects of a Genetic Network: Studying the Lactose/Galactose Regulon of Kluyveromyces lactis

  • Protocol
  • First Online:
Yeast Genetic Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 734))

Abstract

The budding yeast Kluyveromyces lactis has diverged from the Saccharomyces lineage before the whole-genome duplication and its genome sequence reveals lower redundancy of many genes. Moreover, it shows lower preference for fermentative carbon metabolism and a broader substrate spectrum making it a particularly rewarding system for comparative and evolutionary studies of carbon-regulated genetic networks. The lactose/galactose regulon of K. lactis, which is regulated by the prototypic transcription activator Gal4 exemplifies important aspects of network evolution when compared with the model GAL regulon of Saccharomyces cerevisiae. Differences in physiology relate to different subcellular compartmentation of regulatory components and, importantly, to quantitative differences in protein–protein interactions rather than major differences in network architecture. Here, we introduce genetic and biochemical tools to study K. lactis in general and the lactose/galactose regulon in particular. We present methods to quantify relevant protein–protein interactions in that network and to visualize such differences in simple plate assays allowing for genetic approaches in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsong, A. E., Tuch, B. B., Li, H., and Johnson, A. D. (2006) Evolution of alternative transcriptional circuits with identical logic, Nature 443, 415–420.

    Google Scholar 

  2. Gasch, A. P., Moses, A. M., Chiang, D. Y., Fraser, H. B., Berardini, M., and Eisen, M. B. (2004) Conservation and evolution of cis-regulatory systems in ascomycete fungi, PLoS. Biol. 2, e398.

    Google Scholar 

  3. Usaite, R., Jewett, M. C., Oliveira, A. P., Yates, J. R., III, Olsson, L., and Nielsen, J. (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator, Mol Syst. Biol 5, 319.

    Google Scholar 

  4. Butler, G., Kenny, C., Fagan, A., Kurischko, C., Gaillardin, C., and Wolfe, K. H. (2004) Evolution of the MAT locus and its Ho endonuclease in yeast species, Proc Natl Acad Sci U. S. A 101, 1632–1637.

    Google Scholar 

  5. Verma, M., Bhat, P. J., Bhartiya, S., and Venkatesh, K. V. (2004) A steady-state modeling approach to validate an in vivo mechanism of the GAL regulatory network in Saccharomyces cerevisiae, Eur. J. Biochem. 271, 4064–4074.

    Google Scholar 

  6. Verma, M., Bhat, P. J., and Venkatesh, K. V. (2003) Quantitative analysis of GAL genetic switch of Saccharomyces cerevisiae reveals that nucleocytoplasmic shuttling of Gal80p results in a highly sensitive response to galactose, J. Biol. Chem. 278, 48764–48769.

    Google Scholar 

  7. Acar, M., Mettetal, J. T., and van Oudenaarden, A. (2008) Stochastic switching as a survival strategy in fluctuating environments, Nat Genet. 40, 471–475.

    Google Scholar 

  8. Campbell, R. N., Leverentz, M. K., Ryan, L. A., and Reece, R. J. (2008) Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae, Biochem. J. 414, 177–187.

    Google Scholar 

  9. Schaffrath, R. and Breunig, K. D. (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis, Fungal. Genet. Biol. 30, 173–190.

    Google Scholar 

  10. Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De, M. J., Marck, C., Neuveglise, C., Talla, E., Goffard, N., Frangeul, L., Aigle, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J. M., Beyne, E., Bleykasten, C., Boisrame, A., Boyer, J., Cattolico, L., Confanioleri, F., De, D. A., Despons, L., Fabre, E., Fairhead, C., Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jauniaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller, H., Nicaud, J. M., Nikolski, M., Oztas, S., Ozier-Kalogeropoulos, O., Pellenz, S., Potier, S., Richard, G. F., Straub, M. L., Suleau, A., Swennen, D., Tekaia, F., Wesolowski-Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic, I., Bolotin-Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B., Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P., and Souciet, J. L. (2004) Genome evolution in yeasts, Nature 430, 35–44.

    Google Scholar 

  11. Wolfe, K. H. and Shields, D. C. (1997) Molecular evidence for an ancient duplication of the entire yeast genome, Nature 387, 708–713.

    Google Scholar 

  12. Meyer, J., Walker-Jonah, A., and Hollenberg, C. P. (1991) Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae, Mol. Cell. Biol. 11, 5454–5461.

    Google Scholar 

  13. Zenke, F. T., Engels, R., Vollenbroich, V., Meyer, J., Hollenberg, C. P., and Breunig, K. D. (1996) Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p, Science 272, 1662–1665.

    Google Scholar 

  14. Anders, A., Lilie, H., Franke, K., Kapp, L., Stelling, J., Gilles, E. D., and Breunig, K. D. (2006) The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding, J. Biol. Chem. 281, 29337–29348.

    Google Scholar 

  15. Platt, A., Ross, H. C., Hankin, S., and Reece, R. J. (2000) The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase Proc. Natl. Acad. Sci. USA. 97, 3154–3159.

    Google Scholar 

  16. Kurtzman, C. P. (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora, FEMS Yeast Res 4, 233–245.

    Google Scholar 

  17. Lachance, M. A. (2007) Current status of Kluyveromyces systematics, FEMS Yeast Res 7, 642–645.

    Google Scholar 

  18. Dickson, R. C. and Markin, J. S. (1980) Physiological Studies of β-galactosidase Induction in Kluyveromyces lactis, J. Bacteriol. 142, 777–785.

    Google Scholar 

  19. Das, S., Breunig, K. D., and Hollenberg, C. P. (1985) A positive regulatory element is involved in the induction of the β-galactosidase gene from Kluyveromyces lactis, EMBO J. 4, 793–798.

    Google Scholar 

  20. Gödecke, A., Zachariae, W., Arvanitidis, A., and Breunig, K. D. (1991) Coregulation of the Kluyveromyces lactis lactose permease and β-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter, Nucleic Acids Res. 19, 5351–5358.

    Google Scholar 

  21. Zenke, F., Zachariae, W., Lunkes, A., and Breunig, K. D. (1993) Gal80 proteins of Kluyveromyces lactis and Saccharomyces cervisiae are highly conserved but contribute differently to glucose repression of the galactose regulon, Mol. Cell. Biol. 13, 7566–7576.

    Google Scholar 

  22. Hittinger, C. T. and Carroll, S. B. (2007) Gene duplication and the adaptive evolution of a classic genetic switch, Nature 449, 677–681.

    Google Scholar 

  23. Zachariae, W. and Breunig, K. D. (1993) Expression of the transcriptional activator LAC9 (KlGAL4) in Kluyveromyces lactis is controlled by autoregulation, Mol. Cell. Biol. 13, 3058–3066.

    Google Scholar 

  24. Czyz, M., Nagiec, M. M., and Dickson, R. C. (1993) Autoregulation of GAL4 transcription is essential for rapid growth of Kluyveromyces lactis on lactose and galactose, Nucleic Acids Res. 21, 4378–4382.

    Google Scholar 

  25. Kumar, P. R., Yu, Y., Sternglanz, R., Johnston, S. A., and Joshua-Tor, L. (2008) NADP regulates the yeast GAL induction system, Science 319, 1090–1092.

    Google Scholar 

  26. Thoden, J. B., Ryan, L. A., Reece, R. J., and Holden, H. M. (2008) The interaction between an acidic transcriptional activator and its inhibitor: The molecular basis of Gal4p recognition by Gal80p, J. Biol. Chem. 283, 30266–72.

    Google Scholar 

  27. Wésolowski-Louvel, M., Breunig, K. D., and Fukuhara, H. (1996) Kluyveromyces lactis, in Non-Conventional Yeasts in Biotechnology (Wolf, K., Ed.) Springer-Verlag, Heidelberg.

    Google Scholar 

  28. Bolotin-Fukuhara, M., Toffano-Nioche, C., Artiguenave, F., Duchateau-Nguyen, G., Lemaire, M., Marmeisse, R., Montrocher, R., Robert, C., Termier, M., Wincker, P., and Wesolowski-Louvel, M. (2000) Genomic exploration of the hemiascomycetous yeasts: 11. Kluyveromyces lactis, FEBS Lett. 487, 66–70.

    Google Scholar 

  29. Breunig, K. D., Bolotin-Fukuhara, M., Bianchi, M. M., Bourgarel, D., Falcone, C., Ferrero, I., Frontali, L., Goffrini, P., Krijger, J. J., Mazzoni, C., Milkowski, C., Steensma, H. Y., Wesolowski-Louvel, M., and Zeeman, A. M. (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis, Enzyme Microb. Technol. 26, 771–780.

    Google Scholar 

  30. Kluyver, A. J. and Clusters, M. T. J. (1940) The suitability of disaccharides as respiratory and assimilation substrates for yeasts which do not ferment these sugars, 6 ed., pp 121–162.

    Google Scholar 

  31. Fukuhara, H. (2003) The Kluyver effect revisited, FEMS Yeast Res. 3, 327–331.

    Google Scholar 

  32. Goffrini, P., Ferrero, I., and Donnini, C. (2002) Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters, J. Bacteriol. 184, 427–432.

    Google Scholar 

  33. Weirich, J., Goffrini, P., Kuger, P., Ferrero, I., and Breunig, K. D. (1997) Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis, Eur. J. Biochem. 249, 248–257.

    Google Scholar 

  34. Baruffini, E., Goffrini, P., Donnini, C., and Lodi, T. (2006) Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1, FEMS Yeast Res. 6, 1235–1242.

    Google Scholar 

  35. Billard, P., Ménart, S., Blaisonneau, J., Bolotin-Fukuhara, M., Fukuhara, H., and Wésolowski-Louvel, M. (1996) Glucose uptake in Kluyveromyces lactis: Role of the HGT1 gene in glucose transport., J. Bacteriol. 178, 5860–5866.

    Google Scholar 

  36. Visser, W., Scheffers, W. A., Batenburg-van der Vegte, W. H., and Van Dijken, J. P. (1990) Oxygen requirements of yeasts, Appl. Environ. Microbiol. 56, 3785–3792.

    Google Scholar 

  37. Snoek, I. S. and Steensma, H. Y. (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome, FEMS Yeast Res. 6, 393–403.

    Google Scholar 

  38. Kiers, J., Zeeman, A.-M., Luttik, M., Thiele, C., Castrillo, J. I., Steensma, H. Y., Van Dijken, J. P., and Pronk, J. T. (1998) Regulation of alcoholic fermantation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359, Yeast 14, 459–469.

    Google Scholar 

  39. Zeeman, A. M., Kuyper, M., Pronk, J. T., Van Dijken, J. P., and Steensma, H. Y. (2000) Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359, Yeast 16, 611–620.

    Google Scholar 

  40. Gellissen, G. and Hollenberg, C. P. (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis -- a review, Gene 190, 87–97.

    Google Scholar 

  41. Herman, A. and Roman, H. (1966) Allele specific determinants of homothallism in Saccharomyces lactis, Genetics 53, 727–740.

    Google Scholar 

  42. Chen, X. J., Saliola, M., Falcone, C., Bianchi, M. M., and Fukuhara, H. (1986) Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum, Nucleic Acids Res. 14, 4471–4481.

    Google Scholar 

  43. Bianchi, M. M., Falcone, C., Jie, C. X., Wésolowski-Louvel, M., Frontali, L., and Fukuhara, H. (1987) Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pKD1, Curr Genet 12, 185–192.

    Google Scholar 

  44. Heus, J. J., Zonneveld, B. J. M., Steensma, H. Y., and Van den Berg, J. A. (1993) The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae, Mol. Gen. Genet. 236, 355–362.

    Google Scholar 

  45. Heus, J. J., Zonneveld, B. J., Steensma, H. Y., and Van den Berg, J. A. (1994) Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae, Mol. Gen. Genet. 243, 325–333.

    Google Scholar 

  46. Das, S. and Hollenberg, C. P. (1982) A High-Frequency Transformation System for the Yeast Kluyveromyces lactis, Curr Genet 6, 123–128.

    Google Scholar 

  47. Dohmen, R. J., Strasser, A. W. M., Höner, C. B., and Hollenberg, C. P. (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera, Yeast 7, 691–692.

    Google Scholar 

  48. Akada, R., Kawahata, M., and Nishizawa, Y. (2000) Elevated temperature greatly improves transformation of fresh and frozen competent cells in yeast, Biotechniques 28, 854–856.

    Google Scholar 

  49. Kooistra, R., Hooykaas, P. J., and Steensma, H. Y. (2004) Efficient gene targeting in Kluyveromyces lactis, Yeast 21, 781–792.

    Google Scholar 

  50. Rothstein, R. J. (1983) One-Step Gene Disruption in Yeast, Methods in Enzymology 101, 202–211.

    Google Scholar 

  51. Steensma, H. Y. and Linde, J. J. (2001) Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis, Yeast 18, 469–472.

    Google Scholar 

  52. Sheetz, R. M. and Dickson, R. C. (1980) Mutations affecting synthesis of β-galactosidase activity in the yeast Kluyveromyces lactis, Genetics 95, 877–890.

    Google Scholar 

  53. Sheetz, R. M. and Dickson, R. C. (1981) LAC4 Is the structural gene for β-galactosidase in Kluyveromyces lactis, Genetics 98, 729–745.

    Google Scholar 

  54. Inchaurrondo, V. A., Flores, M. V., and Voget, C. E. (1998) Growth and β-galactosidase synthesis in aerobic chemostat cultures of Kluyveromyces lactis, 20 ed., pp 291–298.

    Google Scholar 

  55. Sherman, F., Fink, G. R., and Hicks, J. B. (1986) Laboratory Course Manual for Methods in Yeast Genetics Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  56. Li, Y. F. and Bao, W. G. (2007) Why do some yeast species require niacin for growth? Different modes of NAD synthesis, FEMS Yeast Res 7, 657–664.

    Google Scholar 

  57. Breunig, K. D. (1989) Glucose repression of LAC gene expression in yeast is mediated by the transcriptional activator LAC9, Mol. Gen. Genet. 216, 422–427.

    Google Scholar 

  58. Milkowski, C., Krampe, S., Weirich, J., Hasse, V., Boles, E., and Breunig, K. D. (2001) Feedback regulation of glucose transporter gene expression in Kluyveromyces lactis by glucose uptake, J. Bacteriol 183, 000–001.

    Google Scholar 

  59. Zachariae, W., Kuger, P., and Breunig, K. D. (1993) Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LAC9 (KlGAL4), Nucl. Acids Res. 21, 69–77.

    Google Scholar 

  60. Kopetzki, E., Schumacher, G., and Buckel, P. (1989) Control of formation of active soluble or inactive insoluble baker's yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions, Mol. Gen. Genet. 216, 149–155.

    Google Scholar 

  61. Kornberg, A. and Priver, W. E., Jr. (1951) Enzymatic phosphorylation of adenosine and 2,6-diaminopurine riboside, J. Biol. Chem. 193, 481–495.

    Google Scholar 

  62. Sellick, C. A., Jowitt, T. A., and Reece, R. J. (2009) The effect of ligand binding on the galactokinase activity of yeast Gal1p and its ability to activate transcription, J Biol Chem 284, 229–236.

    Google Scholar 

  63. Engels, R. (1999) PhD thesis, Heinrich-Heine-Universitaet Duesseldorf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin D. Breunig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Anders, A., Breunig, K.D. (2011). Evolutionary Aspects of a Genetic Network: Studying the Lactose/Galactose Regulon of Kluyveromyces lactis . In: Becskei, A. (eds) Yeast Genetic Networks. Methods in Molecular Biology, vol 734. Humana Press. https://doi.org/10.1007/978-1-61779-086-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-086-7_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-085-0

  • Online ISBN: 978-1-61779-086-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics