Skip to main content

Xenotransplantation of Breast Cancers

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 731))

Abstract

Three experimental systems based on mouse models are currently used to study breast cancer: transgenic mice, carcinogen-induced models, and xenografts of breast cancers. Each of these models has advantages and limitations. This chapter focuses on xenotransplantation of breast cancers and reviews the techniques used so far in establishing this model, the advantages and limitations compared to other experimental systems, and finally, the technical questions that remain to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clarke, R., and Johnson, M.D. (2000) Chapter 22: Animal models, in Diseases of the Breast (Harris, J.R., Lippman, M.E., Morrow, M., Hellman, S., Ed.) 2nd ed., pp 319–333, J. B. Lippincott Co., Philadelphia.

    Google Scholar 

  2. Smalley, M., and Ashworth, A. (2003) Stem cells and breast cancer: a field in transit, Nat Rev Cancer 3, 832–844.

    Article  PubMed  CAS  Google Scholar 

  3. Deome, K.B., Faulkin, L.J., Jr., Bern, H.A., and Blair, P.B. (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice, Cancer Res 19, 515–520.

    PubMed  CAS  Google Scholar 

  4. Smith, G.H., Strickland, P., and Daniel, C.W. (2002) Putative epithelial stem cell loss ­corresponds with mammary growth senescence, Cell Tissue Res 310, 313–320.

    Article  PubMed  Google Scholar 

  5. Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., Li, H.I., and Eaves, C.J. (2006) Purification and unique properties of mammary epithelial stem cells, Nature 439, 993–997.

    PubMed  CAS  Google Scholar 

  6. Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.L., Wu, L., Lindeman, G.J., and Visvader, J.E. (2006) Generation of a functional mammary gland from a single stem cell, Nature 439, 84–88.

    Article  PubMed  CAS  Google Scholar 

  7. Sleeman, K.E., Kendrick, H., Ashworth, A., Isacke, C.M., and Smalley, M.J. (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells, Breast Cancer Res 8, R7.

    Article  PubMed  Google Scholar 

  8. Ginestier, C., Hur, M.H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C.G., Liu, S., Schott, A., Hayes, D., Birnbaum, D., Wicha, M.S., and Dontu, G. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome, Cell Stem Cell 1, 555–567.

    Article  PubMed  CAS  Google Scholar 

  9. Cicalese, A., Bonizzi, G., Pasi, C.E., Faretta, M., Ronzoni, S., Giulini, B., Brisken, C., Minucci, S., Di Fiore, P.P., and Pelicci, P.G. (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells, Cell 138, 1083–1095.

    Article  PubMed  CAS  Google Scholar 

  10. Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., Bernard, L., Viale, G., Pelicci, P.G., and Di Fiore, P.P. (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content, Cell 140, 62–73.

    Article  PubMed  CAS  Google Scholar 

  11. Shultz, L.D., Schweitzer, P.A., Hall, E.J., Sundberg, J.P., Taylor, S., and Walzer, P.D. (1989) Pneumocystis carinii pneumonia in scid/scid mice, Curr Top Microbiol Immunol 152, 243–249.

    Article  PubMed  CAS  Google Scholar 

  12. Quintana, E., Shackleton, M., Sabel, M.S., Fullen, D.R., Johnson, T.M., and Morrison, S.J. (2008) Efficient tumour formation by single human melanoma cells, Nature 456, 593–598.

    Article  PubMed  CAS  Google Scholar 

  13. Meyvisch, C. (1983) Influence of implantation site on formation of metastases, Cancer Metastasis Rev 2, 295–306.

    Article  PubMed  CAS  Google Scholar 

  14. Volpe, J.P., and Milas, L. (1990) Influence of tumor transplantation methods on tumor growth rate and metastatic potential of solitary tumors derived from metastases, Clin Exp Metastasis 8, 381–389.

    Article  PubMed  CAS  Google Scholar 

  15. Grant, A.G., Duke, D., and Hermon-Taylor, J. (1979) Establishment and characterization of primary human pancreatic carcinoma in continuous cell culture and in nude mice, Br J Cancer 39, 143–151.

    Article  PubMed  CAS  Google Scholar 

  16. Bergamaschi, A., Hjortland, G.O., Triulzi, T., Sorlie, T., Johnsen, H., Ree, A.H., Russnes, H.G., Tronnes, S., Maelandsmo, G.M., Fodstad, O., Borresen-Dale, A.L., and Engebraaten, O. (2009) Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models, Mol Oncol 3, 469–482.

    Article  PubMed  CAS  Google Scholar 

  17. Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., de Plater, L., Guyader, C., De Pinieux, G., Judde, J.G., Rebucci, M., Tran-Perennou, C., Sastre-Garau, X., Sigal-Zafrani, B., Delattre, O., Dieras, V., and Poupon, M.F. (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays, Clin Cancer Res 13, 3989–3998.

    Article  PubMed  CAS  Google Scholar 

  18. Outzen, H.C., and Custer, R.P. (1975) Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse, J Natl Cancer Inst 55, 1461–1466.

    PubMed  CAS  Google Scholar 

  19. Li, Z., Huang, X., Li, J., Ke, Y., Yang, L., Wang, Y., Yao, L., and Lu, Y. (2002) Human breast carcinoma xenografts in nude mice, Chin Med J (Engl) 115, 222–226.

    Google Scholar 

  20. Sakakibara, T., Xu, Y., Bumpers, H.L., Chen, F.A., Bankert, R.B., Arredondo, M.A., Edge, S.B., and Repasky, E.A. (1996) Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice, Cancer J Sci Am 2, 291–300.

    PubMed  CAS  Google Scholar 

  21. Visonneau, S., Cesano, A., Torosian, M.H., Miller, E.J., and Santoli, D. (1998) Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice, Am J Pathol 152, 1299–1311.

    PubMed  CAS  Google Scholar 

  22. Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J.W., Carey, L., Richardson, A., and Weinberg, R.A. (2004) Reconstruction of functionally normal and malignant human breast tissues in mice, Proc Natl Acad Sci USA 101, 4966–4971.

    Article  PubMed  CAS  Google Scholar 

  23. Lim, E., Vaillant, F., Wu, D., Forrest, N.C., Pal, B., Hart, A.H., Asselin-Labat, M.L., Gyorki, D.E., Ward, T., Partanen, A., Feleppa, F., Huschtscha, L.I., Thorne, H.J., Fox, S.B., Yan, M., French, J.D., Brown, M.A., Smyth, G.K., Visvader, J.E., and Lindeman, G.J. (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers, Nat Med 15, 907–913.

    Article  PubMed  CAS  Google Scholar 

  24. Stingl, J., and Caldas, C. (2007) Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis, Nat Rev Cancer 7, 791–799.

    Article  PubMed  CAS  Google Scholar 

  25. Rygaard, J., and Povlsen, C.O. (1969) Heterotransplantation of a human malignant tumour to “Nude” mice, Acta Pathol Microbiol Scand 77, 758–760.

    Article  PubMed  CAS  Google Scholar 

  26. Rygaard, J., and Povlsen, C.O. (1974) Effects of homozygosity of the nude (NU) gene in three inbred strains of mice. A detailed study of mice of three genetic backgrounds (BALB-c, C3H, C57-BL-6) with congenital absence of the thymus (nude mice) at a stage in the gene transfer, Acta Pathol Microbiol Scand A 82, 48–70.

    PubMed  CAS  Google Scholar 

  27. Clarke, R. (1996) Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines, Breast Cancer Res Treat 39, 69–86.

    Article  PubMed  CAS  Google Scholar 

  28. Bosma, G.C., Custer, R.P., and Bosma, M.J. (1983) A severe combined immunodeficiency mutation in the mouse, Nature 301, 527–530.

    Article  PubMed  CAS  Google Scholar 

  29. Prochazka, M., Gaskins, H.R., Shultz, L.D., and Leiter, E.H. (1992) The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency, Proc Natl Acad Sci USA 89, 3290–3294.

    Article  PubMed  CAS  Google Scholar 

  30. Ito, A., Ishida, T., Yano, H., Inagaki, A., Suzuki, S., Sato, F., Takino, H., Mori, F., Ri, M., Kusumoto, S., Komatsu, H., Iida, S., Inagaki, H., Ueda, R. (2008) Defucosylated anti-CCR4 monoclonal antibody excercises potent ADCC-mediated anti-tumor effect in the novel tumor-bearing humanized NOD/Shi-scid IL2R gamma (null) mouse model, Cancer Immunol Immunother 58, 1195–206.

    Article  PubMed  CAS  Google Scholar 

  31. Meyer, M.J., Fleming, J.M., Lin, A.F., Hussnain, S.A., Ginsberg, E., Vonderhaar, B.K. (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in oestrogen receptor negative breast cancer, Cancer Res 70, 4624–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

R.M. is supported by the Breakthrough Breast Cancer Research Unit, Guy’s Hospital, King’s Health Partners, AHSC, London, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Dontu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cariati, M., Marlow, R., Dontu, G. (2011). Xenotransplantation of Breast Cancers. In: Cree, I. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 731. Humana Press. https://doi.org/10.1007/978-1-61779-080-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-080-5_38

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-079-9

  • Online ISBN: 978-1-61779-080-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics