Skip to main content

Breast Cancer

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 727))

Abstract

Diagnostic imaging modalities utilized in the care of cancer patients must fulfill several requirements: they must diagnose and characterize tumors with high accuracy, must reliably stage and restage the disease, and should allow for monitoring the effects of therapeutic interventions on the course of the disease. They should impact management by guiding treating physicians to appropriate individualized treatment strategies. There is ample evidence that positron emission tomography (PET) and PET-computed tomography (CT) imaging can meet these requirements. This chapter discusses the role and contributions of PET and PET-CT imaging using 18F-fluorodeoxyglucose in diagnosing, staging, restaging, and treatment monitoring of breast cancer. Novel molecular imaging probes and devices that have been developed and translated into early clinical research protocols are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berry, D., Cronin, K., Plevritis, S., Fryback, D., Clarke, L., Zelen, M., et al. (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353, 1784–92.

    PubMed  CAS  Google Scholar 

  2. Jemal, A., Clegg, L.X., Ward, E., et al. (2004) Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer 10(1), 3–27.

    Google Scholar 

  3. Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancert that overexpresses HER2 N Engl J Med 344(11), 783–92.

    PubMed  CAS  Google Scholar 

  4. Czernin, J., Allen-Auerbach, M., Schelbert, H.R. (2007) Improvements in cancer staging with PET-CT: literature-based evidence as of September 2006 J Nucl Med 48(1), 78S-88S.

    PubMed  CAS  Google Scholar 

  5. Phelps, M., Hoffmann, E., Mullani, N., TerPogossian, M. (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography J Nuc Med 16, 210–4.

    CAS  Google Scholar 

  6. Czernin, J., Phelps, M.E. (2002) Positron emission tomography scanning: current and future applications Ann Rev Med 53, 89–112.

    PubMed  CAS  Google Scholar 

  7. Beyer, T., Townsend, D., Brun, T., Kinahan, P., Charron, M., Roddy, R., et al. (2004) A combined PET-CT scanner for clinical oncology J Nuc Med 41, 1369–79.

    Google Scholar 

  8. Rosenberg, R., Hunt, W., Williamson, M., Gilliland, F., Wiest, P., Kelsey, C., et al. (1998) Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: review of 183,134 screening mammograms in Albuquerque, New Mexico Radiology 209, 511–8.

    PubMed  CAS  Google Scholar 

  9. Mandelson, M., Oestreicher, N., Porter, P., White, D., Finder, C., Taplin, S., et al. (2000) Breast density as a predictor of mammographic detection: Comparison of interval -and screen-detected cancers J Natl Cancer Inst 92, 1081–7.

    PubMed  CAS  Google Scholar 

  10. Pisano, E., Gatsonis, C., Hendrick, R., Yaffe, M., Baum, J., Acharyya, S., et al. (2005) Diagnostic accuracy of digital versus film mammography for breast cancer screening N Engl J Med 353, 1773–83.

    PubMed  CAS  Google Scholar 

  11. Laya, M., Larson, E., Taplin, S., White, E. (1996) Effect of estrogen replacement therapy on the specificity and sensitivity of screening mammography J Natl Cancer Inst 88, 643–9.

    PubMed  CAS  Google Scholar 

  12. Wahl, R., Helvie, M., Chang, A., Andersson, I. (1994) Detection of breast cancer in women after augmentation mammoplasty using fluorine-18-fluorodeoxyglucose-PET J Nucl Med 3, 872–5.

    Google Scholar 

  13. Bird, R., Wallace, T., Yankaskas, B. (1992) Analysis of cancers missed at screening mammography Radiology 184, 613–7.

    PubMed  CAS  Google Scholar 

  14. Orel, S., Kay, N., Reynolds, C., Sullivan, D. (1999) BI-RADS categorization as a predictor of malignancy Radiology 211(3), 845–50.

    PubMed  CAS  Google Scholar 

  15. Wright, C., Mueller, C. (1995) Screening mammography and public health policy: the need for perspective Lancet 346, 29–32.

    PubMed  CAS  Google Scholar 

  16. Hall, J., Lee, M., Newman, B., Morrow, J., Anderson, L., Huey, B., et al. (1990) Linkage of early-onset familial breast cancer to chromosome 17q21 Science 250, 1684–9.

    PubMed  CAS  Google Scholar 

  17. Warner, E., Plewes, D.B., Hill, K.A., Causer, P.A., Zubovits, J.T., Jong, R.A., et al. (2004) Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination JAMA 292(1), 1317–25.

    PubMed  CAS  Google Scholar 

  18. Kriege, M., Brekelmans, C.T.M., Boetes, C., Besnard, P.E., Zonderland, H.M., Obdeijn, I.M., et al. (2004) Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition N Engl J Med 35(15), 427–37.

    Google Scholar 

  19. Riedl, C.C., Ponhold, L., Flory, D., Weber, M., Kroiss, R., Wagner, T., et al. (2007) Magnetic resonance imaging of the breast improves detection of invasive cancer, pre-invasive cancer, and premalignant lesions during surveillance of women at high risk for breast cancer Clin Cancer Res 13(20), 6144–52.

    PubMed  Google Scholar 

  20. Warburg, O., Posener, K., Negelein, E., VIII. (1924) The metabolism of cancer cells Biochem Zeitschr 152, 129–69.

    Google Scholar 

  21. Robey, I., Stephen, R., Brown, K., Baggett, B., Gatenby, R., Gillies, R. (2008) Regulation of the Warburg effect in early-passage breast cancer cells Neoplasia 10, 745–56.

    PubMed  CAS  Google Scholar 

  22. Hoffman, E.J., Huang, S.C., Phelps, M.E. (1979) Quantitation in positron emission computed tomography J Comput Assist Tomogr 3, 299–308.

    PubMed  CAS  Google Scholar 

  23. Buck, A., Schirrmeister, H., Kühn, T., Shen, C., Kalker, T., Kotzerke, J., et al. (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters Eur J Nucl Med Mol Imaging 29(10), 1317–23.

    PubMed  CAS  Google Scholar 

  24. Avril, N., Rosé, C., Schelling, M., Dose, J., Kuhn, W., Bense, S., et al. (2005) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations J Clin Oncol 18, 3495–502.

    Google Scholar 

  25. Dehdashti, F., Mortimer, J.E., Siegel, B.A., Griffeth, L.K., Bonasera, T.J., Fusselman, M.J., et al. (1995) Positron Tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays J Nucl Med 36(10), 1766–74.

    PubMed  CAS  Google Scholar 

  26. Bos, R., van der Hoeven, J.J.M., van der Wall, E., van der Groep, P., van Diest, P.J., Comans, E.F.I., et al. (2002) Biologic correlates of 18Fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography J Clin Oncol 20(2), 379–87.

    PubMed  CAS  Google Scholar 

  27. Avril, N., Menzel, M., Dose, J., Schelling, M., Weber, W., Janicke, F., et al. (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis J Nucl Med 42(1), 9–16.

    PubMed  CAS  Google Scholar 

  28. Oshida, M., Uno, K., Suzuki, M., Nagashima, T., Hashimoto, H., Yagata, H., et al. (1998) Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2-deoxy-2-fluoro[18F]-D-glucose Cancer 11, 2227–34.

    Google Scholar 

  29. Mankoff, D.A., Dunnwald, L.K., Gralow, J.R., Ellis, G.K., Schubert, E.K., Tseng, J., et al. (2003) Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy J Nucl Med 44(11), 1806–14.

    PubMed  Google Scholar 

  30. Schoder, H., Gonen, M. (2007) Screening for cancer with PET and PET-CT: potential and limitations J Nucl Med 48(1), 4S-18S.

    PubMed  CAS  Google Scholar 

  31. Vranjesevic, D., Schiepers, C., Silverman, D.H., Quon, A., Villalpando, J., Dahlbom, M., et al. (2003) Relationship between 18F-FDG uptake and breast density in women with normal breast tissue J Nucl Med 44(8), 1238–42.

    PubMed  Google Scholar 

  32. Kumar, R., Chauhan, A., Zhuang, H., Chandra, P., Schnall, M., Alavi, A. (2006) Standardized uptake values of normal breast tissue with 2-Deoxy-2-[F-18]Fluoro-D-glucose positron emission tomography: variations with age, breast density, and menopausal status Mol Imaging Biol 8(6), 355–62.

    PubMed  Google Scholar 

  33. Kubota, K., Matsuzawa, T., Amemiya, A., Kondo, M., Fujiwara, T., Watanuki, S., et al. (1989) Imaging of breast cancer with [f18]Fluorodeoxyglucose and positron emission tomography J Comput Asst Tomogr 13, 1097.

    CAS  Google Scholar 

  34. Bassa, P., Kim, E.E., Wong, F.C., Korkmaz, M., Yang, D., et al. (1996) Evaluation of pre-operative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer J Nucl Med 37, 931–8.

    PubMed  CAS  Google Scholar 

  35. Rostom, A.Y., Powe, J., Kandil, A., Ezzat, A., Bakheet, S., El-Khwsky, F., et al. (1999) Positron emission tomography in breast cancer: a clinicopathological correlation of results Br J Radiol 72, 1064–8.

    PubMed  CAS  Google Scholar 

  36. Utech, C., Young, C., Winter, P. (1996) Prospective evaluation of fluorine-18 fluoro-deoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry Eur J Nucl Med 23, 1588–93.

    PubMed  CAS  Google Scholar 

  37. Noh, D., Yun, I., Kim, J., Kang, H., Lee, D., Chung, J., et al. (1998) Diagnostic value of positron emission tomography for detecting breast cancer World J Surg 22, 223–8.

    PubMed  CAS  Google Scholar 

  38. Schirrmeister, H., Kühn, T., Guhlman, A., Santjohanser, C., Hörster, T., Nüssle, K., et al. (2001) Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures Eur J Nuc Med 28, 351–8.

    CAS  Google Scholar 

  39. Tse, N., Hoh, C., Hawkins, R., Zinner, M., Dahlbom, M., Choi, Y., et al. (1992) The application of positron emission tomographic imaging with fluorodeoxyglucose to the evaluation of breast disease Ann Surg 16(1), 27–34.

    Google Scholar 

  40. Nieweg, O., Kim, E., Wong, W., Broussard, W., Singletary, E., Hortobagyi, G., et al. (1993) Positron emsission tomography with Fluorine-18-deoxyglucose in the detection and staging of breast cancer Cancer 71, 3920–5.

    PubMed  CAS  Google Scholar 

  41. Adler, L.P., Crowe, J.P., al-Kaisi, N.K., Sunshine, J.L. (1993) Evaluation of breast masses and axillary lymph nodes with [F-18] 2 deoxy-2-fluoro-D-glucose PET Radiology 187, 743–50.

    PubMed  CAS  Google Scholar 

  42. Avril, N., Dose, J., Jänicke, F., Bense, S., Ziegler, S., Laubenbacher, C., et al. (1996) Metabolic characterization of breast tumors with positron emission tomography using F-18 Fluorodeoxyglucose J Clin Oncol 14, 1848–57.

    PubMed  CAS  Google Scholar 

  43. Crippa, F., Seregeni, E., Agresti, R., Chiesa, C., Pascali, C., Bogni, A., et al. (1996) Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation Eur J Nuc Med 25, 1429–34.

    Google Scholar 

  44. Noh, D., Yun, I., Kang, H., Kim, Y., Kim, J., Chung, J., et al. (1999) Detection of cancer in augmented breasts by positron emission tomography Eur J Surg 165, 847–51.

    PubMed  CAS  Google Scholar 

  45. Avril, N., Rose, C.A., Schelling, M., Dose, J., Kuhn, W., Bense, S., et al. (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations J Clin Oncol 18(20), 3495–502.

    PubMed  CAS  Google Scholar 

  46. Bleckmann, C., Dose, J., Bohuslavizki, K., Buchert, R., Klutman, S., Mester, J., et al. (1999) Effect of attenuation correction on lesion detectability in FDG PET of breast cancer J Nuc Med 40, 2021–4.

    CAS  Google Scholar 

  47. Yutani, K., Hojo, S., Tatsumi, M., Shiba, E., Noguchi, S., Nishimura, T. (1999) Correlation of F-18-FDG and Tc-99m-MIBI uptake with proliferative activity in breast cancer J Nucl Med 40(5), 16P–17P.

    Google Scholar 

  48. Boerner, A., Weckesser, M., Herzog, H., Schmitz, T., Audretsch, W., Nitz, U., et al. (1999) Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer Eur J Nucl Med 26, 226–30.

    PubMed  CAS  Google Scholar 

  49. Mavi, A., Urhan, M., Yu, J.Q., Zhuang, H., Houseni, M., Cermik, T.F., et al. (2006) Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes J Nucl Med 47(9), 1440–6.

    PubMed  Google Scholar 

  50. Doshi, N., Shao, Y., Silverman, R., Cherry, S. (2000) Design and evaluation of an LSO PET detector for breast cancer imaging Med Phys 27, 1535–43.

    PubMed  CAS  Google Scholar 

  51. Raylman, R., Majewski, S., Smith, M., Proffitt, J., Hammond, W., Srinivasan, A., et al. (2008) The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements Phys Med Biol 53, 637–53.

    PubMed  Google Scholar 

  52. Tafra, L., Cheng, Z., Uddo, J., Lobrano, M.B., Stein, W., Berg, W.A., et al. (2005) Pilot clinical trial of 18F-fluorodeoxyglucose positron-emission mammography in the surgical management of breast cancer Am J Surg 190(4), 628–32.

    PubMed  Google Scholar 

  53. Berg, W.A., Weinberg, I.N., Narayanan, D., et al. (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emissionmammography”) is highly accurate in depicting primary breast cancer BreastJ 12(4), 309–23.

    PubMed  Google Scholar 

  54. Berriolo-Riedinger, A., Touzery, C., Riedinger, J-M., Toubeau, M., Coudert, B., Arnould, L., et al. (2007) [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy Eur J Nucl Med Mol Imaging 34(12), 1915–24.

    PubMed  CAS  Google Scholar 

  55. Krag, D., Weaver, D., Ashikaga, T., Moffat, F., Klimberg, V.S., Shriver, C., et al. (1998) The sentinel node in breast cancer -- a multicenter validation study N Engl JMed 339(14), 941–6.

    PubMed  CAS  Google Scholar 

  56. Adler, L., Faulhaber, P., Schnur, K., Al-Kasai, N., Shenk, R. (1997) Axillary lymph node metastases: screening with [F-18]2 deoxy-2-D-glucose (FDG) PET Radiology 203, 323–7.

    PubMed  CAS  Google Scholar 

  57. Crippa, F., Agresti, R., Donne V.D., Pascali, C., Bogni, A., Chiesa, C., et al. (1997) The contribution of positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) in the pre-operative detection of axillary metastases of breast cancer: the experience of the National Cancer Institute of Milan Tumori 83, 542–3.

    PubMed  CAS  Google Scholar 

  58. Crippa, F., Agresti, R., Seregni, E., Greco, M., Pascali, C., Bogni, A., et al. (1998) Prospective evaluation of fluorine -18-FDG PET in presurgical staging of the axilla in breast cancer J Nucl Med 39, 4–8.

    PubMed  CAS  Google Scholar 

  59. Smith, I., Ogston, K., Whitford, P., Smith, F., Sharp, P., Norton, M., et al. (1998) Staging of the axilla in breast cancer: accurate in vivo assessment using positron emission tomography with 2-(fluorine-18)-fliuoro-2-deoxy-D-glucose Ann Surg 228, 220–7.

    PubMed  CAS  Google Scholar 

  60. Yutani, K., Shiba, E., Tatsumi, M., Uehara, T., Taguchi, T., Takai, S-I., et al. (2000) Comparison of FDG-PET with ­MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis J Comput Assist Tomogr 24, 274–80.

    PubMed  CAS  Google Scholar 

  61. Wahl, R.L., Siegel, B.A., Coleman, R.E., Gatsonis, C.G. (2004) Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a Report of the Staging Breast Cancer With PET Study Group J Clin Oncol 22(2), 277–85.

    PubMed  Google Scholar 

  62. Fuster, D., Duch, J., Paredes, P., Velasco, M., Munoz, M., Santamaria, G., et al. (2008) Preoperative staging of large primary breast cancer with [18F]Fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures JCO 17, 1496.

    Google Scholar 

  63. Donegan, W. (1977) The influence of untreated internal mammary metastases upon the course of mammary cancer Cancer 39, 533–8.

    PubMed  CAS  Google Scholar 

  64. Eubank, W.B., Mankoff, D.A., Takasugi, J., Vesselle, H., Eary, J.F., Shanley, T.J., et al. (2001) 18-Fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer J ClinOncol 19(15), 3516–23.

    PubMed  CAS  Google Scholar 

  65. Tran, A., Pio, B.S., Khatibi, B., Czernin, J., Phelps, M.E., Silverman, D.H.S. (2005) 18F-FDG PET for staging breast cancer in patients with inner-quadrant versus outer-quadrant tumors: comparison with long-term clinical outcome J Nucl Med 45(9), 1455–9.

    Google Scholar 

  66. Carey, L.A., Metzger, R., Dees, E.C., Collichio, F., Sartor, C.I., Ollila, D.W., et al. (2005) American Joint Committee on Cancer Tumor-Node-Metastasis Stage After Neoadjuvant Chemotherapy and Breast Cancer Outcome J Natl Cancer Inst 97(15), 1137–42.

    PubMed  Google Scholar 

  67. Mahner, S., Schirrmacher, S., Brenner, W., Jenicke, L., Habermann, C.R., Avril, N., et al. (2008) Comparison between positron emission tomography using 2-[fluorine-18]fluoro-2-deoxy-D-glucose, conventional imaging and computed tomography for staging of breast cancer Ann Oncol 19(7), 1249–54.

    PubMed  CAS  Google Scholar 

  68. Fueger, B., Weber, W., Quon, A., Crawford, T., Allen-Auerbach, M., Halpern, B., et al. (2005) Performance of 2-Deoxy-2-[F-18]fluoro-D-glucose positron emission tomography and integrated PET-CT in restaged breast cancer patients Mol Imaging Biol 7, 369–76.

    PubMed  Google Scholar 

  69. Radan, L., Ben-Haim, S., Bar-Shalom, R., Guralnik, L., Israel, O. (2006) The role of FDG-PET-CT in suspected recurrence of breast cancer Cancer 107(11), 2545–51.

    PubMed  Google Scholar 

  70. Veit-Haibach, P., Antoch, G., Beyer, T., Stergar, H., Schleucher, R., Hauth, E.A.M., et al. (2007) FDG-PET/CT in restaging of patients with recurrent breast cancer: possible impact on staging and therapy Br J Radiol 80(955), 508–15.

    PubMed  CAS  Google Scholar 

  71. Heusner, T.A., Kuemmel, S., Umutlu, L., Koeninger, A., Freudenberg, L.S., Hauth, E.A.M., et al. (2008) Breast cancer staging in a single session: whole-body PET-CT mammography J Nucl Med 49(8), 1215–22.

    PubMed  Google Scholar 

  72. Cook, G., Fogelman, I. (1999) Skeletal metastases from breast cancer: imaging with nuclear medicine Semin Nucl Med 29, 69–79.

    PubMed  CAS  Google Scholar 

  73. Cook, G.J.R. (2003) Oncological molecular imaging: nuclear medicine techniques Br J Radiol, 76(2), S152–8.

    PubMed  CAS  Google Scholar 

  74. Puglisi, F., Follador, A., Minisini, A.M., Cardellino, G.G., Russo, S., Andreetta, C., et al. (2005) Baseline staging tests after a new diagnosis of breast cancer: further evidence of their limited indications Ann Oncol 16(2), 263–6.

    PubMed  CAS  Google Scholar 

  75. Kasem, A.R., Desai, A., Daniell, S., Sinha, P. (2006) Bone scan and liver ultrasound scan in the preoperative staging for primary breast cancer Breast J 12(6), 544–8.

    PubMed  Google Scholar 

  76. Cook, G.J., Houston, S., Rubens, R., Maisey, M.N., Fogelman, I. (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions J Clin Oncol 16(10), 3375–9.

    PubMed  CAS  Google Scholar 

  77. Specht, J., Tam, S., Kurland, B., Gralow, J., Livingston, R., Linden, H., et al. (2007) Serial 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP) Breast Cancer Res Treat 105(1), 87–94.

    PubMed  Google Scholar 

  78. Du, Y., Cullum, I., Illidge, T.M., Ell, P.J. (2007) Fusion of metabolic function and morphology: sequential [18F]Fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer J Clin Oncol 25(23), 3440–7.

    PubMed  Google Scholar 

  79. Blau, M., Nagler, W., Bender, M. (1962) Fluorine-18: a new isotope for bone scanning J Nucl Med 3, 332–4.

    PubMed  CAS  Google Scholar 

  80. Schirrmeister, H., Guhlmann, A., Kotzerke, J., Santjohanser, C., Kuhn, T., Kreienberg, R., et al. (1999) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography J Clin Oncol 17(8), 2381–9.

    PubMed  CAS  Google Scholar 

  81. Even-Sapir, E., Metser, U., Flusser, G., Zuriel, L., Kollender, Y., Lerman, H., et al. (2004) Assessment of malignant skeletal disease: initial experience with 18F-Fluoride PET-CT and comparison between 18F-Fluoride PET and 18F-Fluoride PET-CT J Nucl Med 45(2), 272–8.

    PubMed  Google Scholar 

  82. Lordick, F., Ott, K., Krause, B-J, Weber, W.A., Becker, K., Stein, H.J., et al. (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial Lancet Oncol 8(9), 797–805.

    PubMed  Google Scholar 

  83. Weber, W.A., Figlin, R. (2007) Monitoring cancer treatment with PET-CT: does it make a difference J Nucl Med 48(1), 36S-44S.

    PubMed  CAS  Google Scholar 

  84. Minn, H., Soini, I. (1989) [18F]fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer Eur J Nucl Med 15, 61–6.

    PubMed  CAS  Google Scholar 

  85. Wahl, R.L., Zasadny, K., Helvie, M., Hutchins, G.D., Weber, B., Cody, R. (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation J Clin Oncol 11(11), 2101–11.

    PubMed  CAS  Google Scholar 

  86. Bruce, D., Evans, N., Heys, S., Needham, G., Ben Younes, H., Mikecz, P., et al. (1995) Positron emission tomography: 2-deoxy-2-[18F]-fluoro-D-glucose uptake in locally advanced breast cancers Eur J Surg Oncol 21, 280–3.

    PubMed  CAS  Google Scholar 

  87. Dehdashti, F., Flanagan, F.L., Mortimer, J., Katzenellenbogen, J., Welch, M., Siegel, B.A. (1998) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to anti-estrogen therapy Eur J Nuc Med 26, 51–6.

    Google Scholar 

  88. Schelling, M., Avril, N., Nahrig, J., Kuhn, W., Romer, W., Sattler, D., et al. (2000) Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer J Clin Oncol 18(8), 1689–95.

    PubMed  CAS  Google Scholar 

  89. Smith, I.C., Welch, A.E., Hutcheon, A.W., Miller, I.D., Payne, S., Chilcott, F., et al. (2000) Positron emission tomography using [(18)F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy J Clin Oncol 18(8), 1676–88.

    PubMed  CAS  Google Scholar 

  90. Wolmark, N., Wang, J., Mamounas, E., Bryant, J., Fisher, B. (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18 J Natl Cancer Institute Monogr 30, 96–102.

    Google Scholar 

  91. Rousseau, C., Devillers, A., Sagan, C., Ferrer, L., Bridji, B., Campion, L., et al. (2006) Monitoring of early response to neoadjuvant chemotherapy in Stage II and III breast cancer by [18F]Fluorodeoxyglucose positron emission tomography J Clin Oncol 24(34),5366–72.

    PubMed  Google Scholar 

  92. Dunnwald, L.K., Gralow, J.R., Ellis, G.K., Livingston, R.B., Linden, H.M., Specht, J.M., et al. (2008) Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer J Clin Oncol 26(27), 4449–57.

    PubMed  CAS  Google Scholar 

  93. Dose Schwarz, J., Bader, M., Jenicke, L., Hemminger, G., Janicke, F., Avril, N. (2005) Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET J Nucl Med 46(7), 1144–50.

    PubMed  Google Scholar 

  94. Couturier, O., Jerusalem, G., N’Guyen, J-M, Hustinx, R. (2006) Sequential positron emission tomography using [18F]Fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer Clin Cancer Res 12(21), 6437–43.

    PubMed  CAS  Google Scholar 

  95. Cachin, F., Prince, H.M., Hogg, A., Ware, R.E., Hicks, R.J. (2006) Powerful prognostic stratification By [18F]Fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy J Clin Oncol 24(19), 3026–31.

    PubMed  Google Scholar 

  96. Yap C, Valk P, Ariannejad M, Seltzer M, Phelps M, Gambhir S et al. (2002) FDG-PET influences the clinical management of lymphoma patients J Nucl Med 41(5):70P

    Google Scholar 

  97. Hillner, B.E., Siegel, B.A., Liu, D., Shields, A.F., Gareen, I.F., Hanna, L., et al. (2008) Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry J Clin Oncol 26(13), 2155–61.

    PubMed  Google Scholar 

  98. Shields, A.F., Grierson, J.R., Dohmen, B.M., Machulla, H.J., Stayanoff, J.C., Lawhorn-Crews, J.M., et al. (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography Nat Med 4(11):1334–6.

    PubMed  CAS  Google Scholar 

  99. Bading, J.R., Shields, A.F. (2008) Imaging of cell proliferation: status and prospects J Nucl Med 49(2), 64S–80S.

    PubMed  CAS  Google Scholar 

  100. Toyohara, J., Waki, A., Takamatsu, S., Yonekura, Y., Magata, Y., Fujibayashi, Y. (2002) Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines Nucl Med Biol 29(3):281–7.

    PubMed  Google Scholar 

  101. Smyczek-Gargya, B., Fersis, N., Dittmann, H., Vogel, U., Reischl, G., Machulla, H-J, et al. (2004) PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study Eur J Nucl Med Mol Imaging 31(5), 720–4.

    PubMed  Google Scholar 

  102. Kenny, L.M., Vigushin, D.M., Al-Nahhas, A., Osman, S., Luthra, S.K., Shousha, S., et al. (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]Fluorothymidine-positron emission tomography imaging: evaluation of analytical methods Cancer Res 65(21), 10104–12.

    PubMed  CAS  Google Scholar 

  103. Pio, B., Park, C., Pietras, R., Hsueh, W-A, Satyamurthy, N., Pegram, M., et al. (2006) Usefulness of 3′-[F-18]Fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy Mol Imaging Biol 8(1), 36–42.

    PubMed  Google Scholar 

  104. Peterson, L.M., Mankoff, D.A., Lawton, T., Yagle, K., Schubert, E.K., Stekhova, S., et al. (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-Fluoroestradiol J Nucl Med 49(3), 367–74.

    PubMed  Google Scholar 

  105. Linden, H.M., Stekhova, S.A., Link, J.M., Gralow, J.R., Livingston, R.B., Ellis, G.K., et al. (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer J Clin Oncol 24(18), 2793–9.

    PubMed  CAS  Google Scholar 

  106. Schneider, B., Sledge, G. (2007) Drug Insight: VEGF as a therapeutic target for breast cancer Nat Clin Pract Oncol 4, 181–9.

    PubMed  CAS  Google Scholar 

  107. Miller, K.D., Chap, L.I., Holmes, F.A., Cobleigh, M.A., Marcom, P.K., Fehrenbacher, L., et al. (2005) Randomized Phase III trial of Capecitabine compared with Bevacizumab plus Capecitabine in patients with previously treated metastatic breast cancer J Clin Oncol 23(4), 792–9.

    PubMed  CAS  Google Scholar 

  108. Kenny, L.M., Coombes, R.C., Oulie, I., Contractor, K.B., Miller, M., Spinks, T.J., et al. (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients J Nucl Med 49(6), 879–86.

    PubMed  Google Scholar 

  109. Smith-Jones, P.M., Solit, D.B., Akhurst, T., Afroze, F., Rosen, N., Larson, S.M. (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors Nat Biotechnol 22, 701–6.

    PubMed  CAS  Google Scholar 

  110. Smith-Jones, P.M., Solit, D.B., Afroze, F., Rosen, N., Larson, S.M. (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET J Nucl Med 47(5), 793–6.

    PubMed  CAS  Google Scholar 

  111. Weber, W., Czernin, J., Phelps, M., Herschman, H. (2008) Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs Nat Clin Pract Oncol 5, 44–54.

    PubMed  CAS  Google Scholar 

  112. Haubner, R., Weber, W.A., Beer, A.J., Vabuliene, E., Reim, D., Sarbia, M., et al. (2005) Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [(18)F]Galacto-RGD. PLoS Med 2(3), e70.

    Google Scholar 

  113. Rajendran, J.G., Mankoff, D.A., O’Sullivan, F., Peterson, L.M., Schwartz, D.L., Conrad, E.U., et al. (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]Fluo-romisonidazole and [18F]Fluorodeoxyglucose positron emission tomography imaging Clin Cancer Res. 10(7), 2245–52.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Czernin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Czernin, J., Benz, M.R., Allen-Auerbach, M.S. (2011). Breast Cancer. In: Juweid, M., Hoekstra, O. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 727. Humana Press. https://doi.org/10.1007/978-1-61779-062-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-062-1_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-061-4

  • Online ISBN: 978-1-61779-062-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics