Skip to main content

Overview of the Generation, Validation, and Application of Phosphosite-Specific Antibodies

  • Protocol
  • First Online:
Signal Transduction Immunohistochemistry

Abstract

Protein phosphorylation is a universal key posttranslational modification that affects the activity and other properties of intracellular proteins. Phosphosite-specific antibodies can be produced as polyclonals or monoclonals in different animal species, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is key for their use in proteomics and profiling of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ubersax, J. A., and Ferrell, J. E. Jr. (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8, 530–541.

    PubMed  CAS  Google Scholar 

  2. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912–1343.

    PubMed  CAS  Google Scholar 

  3. Tarrant, M. K., and Cole, P. A. (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78, 797–825.

    PubMed  CAS  Google Scholar 

  4. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004) Protein phosphatases in the human genome. Cell 117, 699–711.

    PubMed  CAS  Google Scholar 

  5. Hunter, T. (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21, 140–146.

    PubMed  CAS  Google Scholar 

  6. Boyle, W. J., van der Geer, P., and Hunter T. (1991) Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol 201, 201–240.

    Google Scholar 

  7. Ross, A. H., Baltimore, D., and Eisen, H. N. (1981) Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature 294, 654–656.

    PubMed  CAS  Google Scholar 

  8. Nairn, A. C., Detre, J. A., Casnellie, J. E., and Greengard, P. (1982) Serum antibodies that distinguish between the phospho- and dephospho-forms of a phosphoprotein. Nature 299, 734–736.

    PubMed  CAS  Google Scholar 

  9. Glenney, J. R. Jr., Zokas, L., and Kamps, M. P. (1988) Monoclonal antibodies to phosphotyrosine. J Immunol Methods 109, 277–285.

    PubMed  CAS  Google Scholar 

  10. Kanakura, Y., Druker, B., Cannistra, S. A., Furukawa, Y., Torimoto, Y., and Griffin, J. D. (1990) Signal transduction of the human granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins. Blood 76, 706–715.

    PubMed  CAS  Google Scholar 

  11. Okamoto, M., Karasik, A., White, M. F., and Kahn, C. F. (1990) Epidermal growth factor stimulated phosphorylation of a 120-kilodalton endogenous substrate protein in rat hepatocytes. Biochemistry 29, 9489–9494.

    PubMed  CAS  Google Scholar 

  12. Glenney, J. R. Jr. (1989) Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus.J Biol Chem 264, 20163–20166.

    PubMed  CAS  Google Scholar 

  13. Kanner, S. B., Reynolds, A. B., Vines, R. R., and Parsons, J. T. (1990) Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci USA 87, 3328–3332.

    PubMed  CAS  Google Scholar 

  14. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350–4354.

    PubMed  CAS  Google Scholar 

  15. Glenney, J. R. Jr. (1992) Tyrosine phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim Biophys Acta 1134, 113–127.

    PubMed  CAS  Google Scholar 

  16. Sefton, B. M. (1982) Phosphorylation and metabolism of the transforming protein of Rous sarcoma virus. J Virol 41, 813–820.

    PubMed  CAS  Google Scholar 

  17. Shankaran, H., Ippolito, D. L., Chrisler, W. B., Resat, H., Bollinger, N., Opresko, L. K., et al. (2009) Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol 5, 1–13.

    Google Scholar 

  18. Lemeer, S., and Heck, A. J. (2009) The phosphoproteomics data explosion. Curr Opin Chem Biol 13, 414–420.

    PubMed  CAS  Google Scholar 

  19. Kehoe, J. W., Velappan, N., Walbolt, M., Rasmussen, J., King, D., Lou, J., et al. (2006) Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomics 5, 2350–2363.

    PubMed  CAS  Google Scholar 

  20. Harlow, E., and Lane, D. (1988) Antibodies: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  21. Weng, Q-P., Kozlowski, M., Belham, C., Zhang, A., Comb, M. J., et al. (1995) Regulation of the p70 S6 kinase by phosphorylation in vivo. J Biol Chem 273, 16621–16629.

    Google Scholar 

  22. Yung, Y., Dolginov, Y., Zao, Z., Rubinfeld, H., Michael, D., Hanoch, T., et al. (1997) Detection of ERK activation by a novel monoclonal antibody. FEBS Lett 408, 292–296.

    PubMed  CAS  Google Scholar 

  23. Campos-Gonzalez, R., and Glenney, J. R. Jr. (1991) Immunodetection of the ligand-activated receptor for epidermal growth factor. Growth Factors 4, 305–316.

    PubMed  CAS  Google Scholar 

  24. Sternberger, L. A., and Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80, 6126–6130.

    PubMed  CAS  Google Scholar 

  25. Heffetz, D., Fridkin, M., and Zick, Y. (1991) Generation and use of antibodies to phosphothreonine. Methods Enzymol 201, 44–52.

    PubMed  CAS  Google Scholar 

  26. Wang, J. Y. (1991) Generation and use of anti-phosphotyrosine antibodies raised against bacterially expressed abl protein. Methods Enzymol 201, 53–65.

    PubMed  CAS  Google Scholar 

  27. Briand, J. P., Muller, S., and Van Regenmortel, M. H. V. (1985) Synthetic peptides as antigens: pitfalls of conjugation methods. J Immunol Methods 78, 59–69.

    PubMed  CAS  Google Scholar 

  28. Epstein, R. J., Druker, B. J., Roberts, T. M., and Stiles, C. D. (1992) Synthetic phosphopeptide immunogens yield activation-specific antibodies to the c-erbB-2 receptor. Proc Natl Acad Sci USA 89, 10435–10439.

    PubMed  CAS  Google Scholar 

  29. Edbauer, D., Cheng, D., Batterton, M. N., Wang, C.-F., Duong, D. M., et al. (2009) Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol Cell Proteomics 8, 681–695.

    PubMed  CAS  Google Scholar 

  30. Shi, Y., Dodson, G. E., Mukhopadhyay, P. S., Shanware, N. P., Trinh, A. T., and Tibbetts, R. S. (2007) Identification of carboxyl-terminal MCM3 phosphorylation sites using polyreactive phosphospecific antibodies.J Biol Chem 282, 9236–9243.

    PubMed  CAS  Google Scholar 

  31. Tam, J. P., and Zavala, F. (1989) Multiple antigen peptide: a novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays. J Immunol Methods 124, 53–61.

    PubMed  CAS  Google Scholar 

  32. Spieker-Polet, H., Sethupathi, P., Yam, P. C., and Knight, K. L. (1995) Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc Natl Acad Sci USA 92, 9348–9352.

    PubMed  CAS  Google Scholar 

  33. Babcook, J. S., Leslie, K. B., Olsen, O. A., Salmon, R. A., and Schrader, J. H. (1996) Proc Natl Acad Sci USA 93, 7843–7848.

    Google Scholar 

  34. Ruff-Jamison, S., Campos-Gonzalez, R., and Glenney, J. R. Jr. (1991) Heavy and light variable region sequences and antibody properties of anti-phosphotyrosine antibodies reveal both common and distinct features.J Biol Chem 266, 6607–6613.

    PubMed  CAS  Google Scholar 

  35. Ruff-Jamison, S., and Glenney, J. R. Jr. (1993) Requirements for both H and L chain V regions, VH and VK joining amino acids, and the unique H chain D region for the high affinity binding of an anti-phosphotyrosine antibody. J Immunol 150, 3389–3396.

    PubMed  CAS  Google Scholar 

  36. Ruff-Jamison, S., and Glenner, J. R. Jr. (1993) Molecular modeling and site-directed mutagenesis of an anti-phosphotyrosine antibody predicts the combining site and allows the detection of higher affinity interactions. Protein Eng 6, 661–668.

    PubMed  CAS  Google Scholar 

  37. Tuckey, C. D., and Noren, C. J. (2002) Selection for mutants improving expression of an anti-MAP kinase monolconal antibody by filamentous phage display. J Immunol Methods 270, 247–257.

    PubMed  CAS  Google Scholar 

  38. Campos-Gonzalez, R., and Glenney, J. R. Jr. (1991) Temperature-dependent tyrosine phosphorylation of microtubule-associated protein kinase in epidermal growth factor-stimulated human fibroblasts. Cell Regul 2, 663–673.

    PubMed  CAS  Google Scholar 

  39. Vaughan, M. H., Xia, X., Wang, X., Chronopoulou, E., Gao, G. J., Campos-Gonzalez, R., et al. (2007) Generation and characterization of a novel phospho-specific monoclonal antibody to p120-catenin serine 879 Hybridoma 26, 407–415.

    PubMed  CAS  Google Scholar 

  40. Borrebaeck, C. A. K., Malmborg, A. C., Furebring, C., Michaelsson, A., Ward, S., Danielsoon, L., et al. (1992) Kinetic analysis of recombinant antibody-antigen interactions: relation between structural domains and antigen binding. Nat Biotechnol 10, 697–698.

    CAS  Google Scholar 

  41. Michalewski, M. P., Kaczmarski, W., Golabek, A., Kida, E., Kaczmarski, A., and Wisniewski, K. E. (2002) Immunoblotting with anti-phosphoamino acid antibodies: importance of the blocking solution. Anal Biochem 276, 254–257.

    Google Scholar 

  42. Song, K. S., Tang, Z., and Lisanti, M. P. (1997) Mutational analysis of the proteperties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. J Biol Chem 271, 4398–4403.

    Google Scholar 

  43. Heinrich, M. C., Griffith, D. J., Druker, B. J., Wait, C. L., Ott, K. A., and Zigler, A. J. (2000) Inhibition of c-kit receptor tyrosine kinase kinase activity by STI571, a selective tyrosine kinase inhibitor. Blood 96, 925–932.

    PubMed  CAS  Google Scholar 

  44. Nelson, E. A., Walker, S. R., Kepich, A., Gashin, L. B., Hideshima, T., Ikeda, H., et al. (2008) Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 112, 5095–5102.

    PubMed  CAS  Google Scholar 

  45. Hardie, D. G., Haystead, T. A. J., and Sim, A. T. R. (2001) Use of okadaic acid to inhibit protein phosphatases in intact cells. Methods Enzymol 201, 531–538.

    Google Scholar 

  46. Gordon, J. A. (2001) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201, 581–586.

    Google Scholar 

  47. Evans, G. A., Garcia, G. G., Erwin, R., Howard, O. M., and Farrar, W. L. (1994) Pervanadate stimulates the effects of interleukin-2 (IL-2) in human T cells and provides evidence for the activation of two distinct tyrosine kinase pathways by IL-2. J Biol Chem 269, 23407–23412.

    PubMed  CAS  Google Scholar 

  48. Ruff, S. J., Chen, K., and Cohen, S. (1997) Peroxovanadate induces tyrosine phosphorylation of multiple signaling proteins in mouse liver and kidney. J Biol Chem 272, 1263–1267.

    PubMed  CAS  Google Scholar 

  49. Yang, T. T., Yu, R. Y., Agadir, A., Gao, G. J., Campos-Gonzalez, R., Tournier, C., and Chow, C. W. (2008) Integration of protein kinases mTOR and extracellular signal-regulated kinase 5 in regulating nucleocytoplasmic localization of NFATc4. Mol Cell Biol 28, 3489–3501.

    PubMed  CAS  Google Scholar 

  50. Espina, V., Edmiston, K. H., Heiby, M., Pierobon, M., Sciro, M., Merritt, B., Banks, S., Deng, J., VanMeter, A. J., Geho, D. H., Pastore, L., Sennesh, J., Petricoin, E. F., and Liotta, L. A. (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7, 1998–2018.

    PubMed  CAS  Google Scholar 

  51. Gilbert, C., Rollet-Labelle, E., Con, A. C., and Naccache, P. H. (2002) Immunoblotting and sequential lysis protocols for the analysis of tyrosine phosphorylation-dependent signaling. J Immunol Methods 271, 185–201.

    PubMed  CAS  Google Scholar 

  52. Skolnik, E. Y., Lee, C. H., Batzer, A., Vicentini, L. M., Zhou, M., Daly, R., et al. (1993) The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Sch: implications for insulin control of ras signaling. EMBO J 12, 1929–1936.

    PubMed  CAS  Google Scholar 

  53. Barbareschi, M., Girlando, S., Mauri, F. M., Eccher, C., Mauri, F. A., Togni, R., et al. (1994) Quantitative growth fraction evaluation with MIB1 and Ki67 antibodies in breast carcinomas. Am J Clin Pathol 102, 171–175.

    PubMed  CAS  Google Scholar 

  54. Mandell, J. W. (2003) Phosphorylation state-specific antibodies. Applications in investigative and diagnostic pathology. Am J Pathol 163, 1687–1698.

    PubMed  CAS  Google Scholar 

  55. Bordeaux, J., Welsh, A. W., Agarwal, S., Killiam, E., Baquero, M. T., Hanna, J. A., Anagnostou, V. K., and Rimm, D. L. (2010) Antibody validation. Biotechniques 48, 197–209.

    PubMed  CAS  Google Scholar 

  56. Mandell, J. W. (2008) Immunohistochemical assesment of protein phosphorylation state: the dream and the reality. Histochem Cell Biol 130, 465–471.

    PubMed  CAS  Google Scholar 

  57. Kalyuzhny, A. E. (2009) The dark side of the immunohistochemical moon: industry. J Histochem Cytochem 57, 1099–1101.

    PubMed  CAS  Google Scholar 

  58. Krutzik, P. O., Irish, J. M., Nolan, G. P., and Perez, O. D. (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110, 206–221.

    PubMed  CAS  Google Scholar 

  59. Perez, O. D., Mitchell, D., Campos, R., Gao, G-J., Li, L., and Nolan, G. P. (2005) Multiparameter analysis of intracellular ­phosphoepitopes in immunophenotyped cell populations by flow cytometry. Curr Protoc Cytom 6, 1–22.

    Google Scholar 

  60. Chow, S., Patel, H., Hedley, D. W. (2001) Measurement of MAP kinase activation by flow cytometry using phospho-specific ­antibodies to MEK and ERK: potential for pharmacodynamic monitoring of signal transduction inhibitors. Cytometry 46, 72–78.

    PubMed  CAS  Google Scholar 

  61. Lombardi Givan, A. (2001) Flow cytometry. First principles. 2nd edition. New York: Wiley-Liss.

    Google Scholar 

  62. Smith, C. L., Debouk, C., Rosenberg, M., and Culp, J. S. (1988) Phosphorylation of ferine residue 89 of human adenovirus E1A proteins is responsible for their characteristic electrophoretic mobility shits, and its mutation affects biological fuction. J Virol 63, 1569–1577.

    Google Scholar 

  63. Wegener, A. D., and Jones, L. R. (1984) Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. Evidence for a protein structure consisting of multiple identical phosphorylatable subunits. J Biol Chem 259, 1834–1841.

    PubMed  CAS  Google Scholar 

  64. Jorgensen, C. S., Jagd, M., Sorensen, B. K., McGuire, J., Barkholt, V., Hojrup, P., et al. (2004) Efficacy and compatibility with mass spectrometry of methods for elution ofproteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinyldifluoride membranes. Anal Biochem 330, 87–97.

    PubMed  CAS  Google Scholar 

  65. Forrer, P., Tamaskovic, R., and Jaussi, R. (1998) Enzyme-linked immunosorbent assay for measurement of JNK, ERK and p38 kinase activities. Biol Chem 379, 1101–1111.

    PubMed  CAS  Google Scholar 

  66. Suzuki, S., Tamai, K., and Yoshida, S. (2002) Enzyme-linked immunosorbent assay for distinct cyclin-dependent kinase activities using phosphorylation-site-specific anti pRB monoclonal antibodies. Anal Biochem 301, 65–74.

    PubMed  CAS  Google Scholar 

  67. Offterdinger, M., and Bastiaens, P. I. (2008) Prolonged EGFR signaling by ERBB2-mediated sequestration at the plasma membrane. Traffic 9, 147–155.

    PubMed  CAS  Google Scholar 

  68. Loos, T., Mortier, A., Gouwy, M., Ronsee, I., Put, W., Lenaerts, J-P., et al. (2008) Citrullination of CXCL10 and CXCL11 by peptidylarginine diminase: a naturally occurring posttranslational modification of chemockines and new dimension of immunoregulation. Blood 112, 2648–2656.

    PubMed  CAS  Google Scholar 

  69. Ramos, J. W. (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40, 2707–2719.

    PubMed  CAS  Google Scholar 

  70. Gonzalez, E., and McGraw, T. E. (2009) The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8, 2502–2508.

    PubMed  CAS  Google Scholar 

  71. Ribeiro-Oliveira, A. Jr., Franchi, G., Kola, B., Dalino, P., Pinheiro, S. V., Salahuddin, N., et al. (2008) Protein western array analysis in human pituitary tumors: insights and limitations. Endocr Relat Cancer 15, 1099–1114.

    PubMed  CAS  Google Scholar 

  72. Pelech, S., Sutter, C., and Zhang, H. (2003) Kinetworks protein kinase multiblot analysis. Methods Mol Biol 218, 99–111.

    PubMed  CAS  Google Scholar 

  73. Ciaccio, M. F., Wagner, J. P., Chuu, C.-P., Lauffenburger, D. A., and Jones, R. B. (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods 7, 148–155.

    PubMed  CAS  Google Scholar 

  74. Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., et al. (2007) Global survey of phosphotyrosine signaling identifies ­oncogenic kinases in lung cancer. Cell 131, 1190–1203.

    PubMed  CAS  Google Scholar 

  75. Mayya, V., Lundgren, D. H., Hwang, S.-I., Rezaul, K., Wu, L., Eng, J. K., Rodionov, V., and Han, D. K. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46 1–ra46 16.

    Google Scholar 

  76. Fan, A., Deb-Basu, D., Orban, M. W., Gotlib, J. R., Natkunam, Y., O’Neill, R., et al. (2009) Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical samples. Nat Med 15, 566–571.

    PubMed  CAS  Google Scholar 

  77. Hughes, T. R., and Shoemaker, D. D. (2001) DNA microarrays for expression profiling. Curr Opin Chem Biol 5, 21–25.

    PubMed  CAS  Google Scholar 

  78. Andersson, O., Kozlowski, M., Garachtchenko, T., Nikoloff, C., Lew, N., Litman, D. J., et al. (2005) Determination of relative protein abundance by internally normalized ratio algorithm with antibody arrays. J Proteome Res 4, 758–767.

    PubMed  CAS  Google Scholar 

  79. Pelech, S., Jelinkova, L., Susor, A., Zhang, H., Shi, X., Pavlok, A., et al. (2008) Antibody microarray analyses of signal transduction protein expression and phosphorylation during porcine oocyte maturation. J Proteome Res 7, 2860–2871.

    PubMed  CAS  Google Scholar 

  80. MacBeath, G. (2002) Protein microarrays and proteomics. Nat Genet 32, 526–532.

    PubMed  CAS  Google Scholar 

  81. Russo, G., Zegar, C., and Giordano, A. (2003) Advantages and limitations of microarray technology in human cancer. Oncogene 22, 6497–6507.

    PubMed  CAS  Google Scholar 

  82. Nielsen, U. B., Cardone, M. H., Sinskey, A. J., MacBeath, G., and Sorger, P. K. (2003) Profiling receptor kinase activation by using Ab microarrays. Proc Natl Acad Sci USA 100, 9330–9335.

    PubMed  Google Scholar 

  83. Liu, X., Kim, P., Kirkland, R., Magonova, K., Liu, L., Zhang, I., et al. (2009) Prevalence of activated & total p95HER2 and other receptor tyrosine kinases in breast cancer. AACR San Antonio Breast Cancer Symposium Abstract #3053.

    Google Scholar 

  84. Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W., et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989.

    PubMed  CAS  Google Scholar 

  85. Espina, V., Woodhouse, E. C., Wulfkuhle, J., Asmussen, H. D., Petricoin, E. F., and Liotta, L. A., (2004) Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods 290, 121–133.

    PubMed  CAS  Google Scholar 

  86. Spurrier, B., Ramalingam, S., and Nishizuka, S. (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3, 1796–1808.

    PubMed  Google Scholar 

  87. Chan, S. M., Ermann, J., Su, L., Fathman, C. G., and Utz, P. J. (2004) Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med 10, 1390–1396.

    PubMed  CAS  Google Scholar 

  88. Natarajan Mendes, K., Nicorici, D., Cogdell, D., Tabus, I., Ylf-Harga, O., Guerra, R., et al. (2007) Analysis of signaling pathways in 90 cancer cell lines by protein lysate array.J Proteome Res 6, 2753–2767.

    Google Scholar 

  89. Schweitzer, B., Roberts, S., Grimwade, B., Shao, W., Wang, M., Fu, Q., et al. (2002) Multiplex protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol 20, 359–365.

    PubMed  CAS  Google Scholar 

  90. Dahut, W. L., Scripture, C., Posadas, E., Jain, L., Gulley, J. L., Arlen, P. M., et al. (2008) A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res 14, 209–214.

    PubMed  CAS  Google Scholar 

  91. Tan, C. S. H., Bodenmiller, B., Pascualescu, A., Jovanovic, M., Hengartner, M. O., Jorgensen, C., et al. (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2, ra39 1–ra39 13.

    Google Scholar 

  92. Drucker, B. J. (2009) Perspectives on the development of imatinib and the future of cancer research. Nat Med 10, 1149–1152.

    Google Scholar 

  93. Jilani, I., Kanttarjian, H., Gorre, M., Cortes, J., Ottmann, O., Bhalla, K., et al. (2008) Phosphorylation levels of BCR-ABL, CrkL, AKT, and STAT5 in imatinib-resistant chronic myeloid leukemia cells implicate alternative pathway usage as a survival strategy. Leuk Res 32, 643–649.

    PubMed  CAS  Google Scholar 

  94. Irish, J. M., Kotecha, N., and Nolan, G. P. (2006) Mapping normal and cancer cell signaling networks: towards single-cell proteomics. Nat Rev Cancer 6, 146–155.

    PubMed  CAS  Google Scholar 

  95. Juan, G., Gruenwald, S., and Darzynkiewicz, Z. (1998) Phosphorylation of retinoblastoma susceptibility gene protein assayed in individual lymphocytes during their mitogenic stimulation. Exp Cell Res 239, 104–110.

    PubMed  CAS  Google Scholar 

  96. Juan, G., Traganos, F., and Darzynkiewicz, Z. (1999) Histone H3 phosphorylation in human monocytes and during HL-60 cell differentiation. Exp Cell Res 246, 212–220.

    PubMed  CAS  Google Scholar 

  97. Zell, T., Khoruts, A., Ingulli, E., Bonnevier, J. L., Mueller, D. L., and Jenkins, M. K. (2001) Single-cell analysis of signal transduction in CD4 T cells stimulated by antigen in vivo. Proc Natl Acad Sci USA 98, 10805–10810.

    PubMed  CAS  Google Scholar 

  98. Krutzik, P. O., Hale, M. B., and Nolan, G. P. (2005) Characterization of the murine immunological signaling network with phosphospecific flow cytometry. J Immunol 175, 2366–2373.

    PubMed  CAS  Google Scholar 

  99. Lu, X. P., Alpdogan, O., Lin, J., Balderas, R., Campos-Gonzalez, R., Wang, X., et al. (2008) STAT-3 and ERK1/2 phosphorylation are critical for T-cell activation and graft-versus-host disease. Blood 112, 5254–5258.

    PubMed  CAS  Google Scholar 

  100. Perez, O. D., and Nolan, G. P. (2002) Simultaneous measurement of multiple active kinase states using polychromatic flow ­cytometry. Nat Biotechnol 20, 155–162.

    PubMed  CAS  Google Scholar 

  101. Shachaf, C. M., Elchuri, S. V., Koh, A. L., Zhu, J., Nguyen, L. N., Mitchell, D. J., et al. (2009) A novel method for detection of phosphorylation in single cells by surface enhanced raman scattering (SERS) using composite organic-inorganic nanoparticles. PLoS One 4, e5206 1–e5206 12

    Google Scholar 

  102. Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T., and Nolan, G.P. (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228.

    PubMed  CAS  Google Scholar 

  103. Hale, M. B., Krutzik, P. O., Samra, S. S., Crane, J. M., and Nolan, G. P. (2009) Stage dependent aberrant regulation of cytokine-STAT ­signaling in murine systemic lupus erythematosus. PLoS One 4, e6756 1–e6756 10.

    Google Scholar 

  104. Krutzik, P. O., and Nolan, G. P. (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3, 361–368.

    PubMed  CAS  Google Scholar 

  105. Pritchard, J. R., Cosgrove, B. D., Hemann, M. T., Griffith, L. G., Wands, J. R., and Lauffenburger, D. A. (2009) Three-kinase inhibitor combination recreates multipathway effects of a geldanamycin analogue on hepatocellular carcinoma cell death. Mol Cancer Ther 8, 2183–2192.

    PubMed  CAS  Google Scholar 

  106. Morgan, E., Varro, R., Sepulveda, H., Ember, J. A., Apgar, J., Wilson, J., et al. (2004) Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol 110, 252–266.

    PubMed  CAS  Google Scholar 

  107. Chen, L., Huynh, L., Apgar, J., Tang, L., Rassenti, L., Weiss, A., and Kipps, T. J. (2008) ZA-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood 111, 2685–2692.

    PubMed  CAS  Google Scholar 

  108. Massarelli, E., Liu, D. D., Lee, J. J., El-Naggar, A. K., Lo Muzio, L., Staibano, S., et al. (2005) Akt activation correlates with adverse outcome in tongue cancer. Cancer 104, 2430–2436.

    PubMed  CAS  Google Scholar 

  109. Smitz, K. J., Otterbach, F., Callies, R., Levkau, B., Holscher, M., Hoffmann, O., et al. (2004) Prognostic relevance of activated Akt kinase in node-negative breast cancer: a clinicopathological study of 99 cases. Mol Pathol 17, 15–21.

    Google Scholar 

  110. Okamoto, I., Kenyon, L. C., Emlet, D. R., Mori, T., Sasaki, J., Hirosako, S., et al. (2003) Expression of activated EGFRvIII in small cell lung cancer. Cancer Sci 94, 50–56.

    PubMed  CAS  Google Scholar 

  111. D’Andrea, M. R., Mel, J. M., Tuman, R. W., Galemmo, R. A., and Johnson, D. L. (2005) Validation of in vivo pharmacodynamic activity of a novel PDGF receptor tyrosine kinase inhibitor using immunohistochemistry and quantitative image analysis. Mol Cancer Ther 4, 1198–1204.

    PubMed  Google Scholar 

  112. Kong, A., Leboucher, P., Leek, R., Calleja, V., Winter, S., Harris, A., et al. (2006) Prognostic value of an activation state marker for epidermal growth factor receptor in tissue microarrays of head and neck cancer. Cancer Res 66, 2834–2843.

    PubMed  CAS  Google Scholar 

  113. VanMeter, A. J., Rodriguez, A. S., Bowman, E. D., Jen, J., Harris, C. C., Deng, J., et al. (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer. Mol Cell Proteomics 7, 1902–1924.

    PubMed  CAS  Google Scholar 

  114. Nagai, Y., Miyasaki, M., Akoi, R., Zama, T., Inouye, S., Hirose, K., et al. (2000) A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol 18, 313–316.

    PubMed  CAS  Google Scholar 

  115. Ng, T., Squire, A., Hansra, G., Bornancin, F., Prevostel, C., Hanby, A., et al. (1999) Imaging protein kinase Calpha activation in cells. Science 283, 2085–2089.

    PubMed  CAS  Google Scholar 

  116. Tomida, T., Takekawa, M., O’Grady, P., and Saito, H. (2009) Stimulus-specific distinctions in spatial and temporal dynamics of stress-activated protein kinase kinase kinases revealed by a fluorescence resonance energy transfer biosensor. Mol Cell Biol 29, 6117–6127.

    PubMed  CAS  Google Scholar 

  117. Ting, A. Y., Kain, K. H., Klemke, R. L., and Tsien, R. Y. (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci USA 98, 15003–15008.

    PubMed  CAS  Google Scholar 

  118. Kelleher, M. T., Fruhwirth, G., Patel, G., Ofo, E., Festy, F., Barber, P. R., et al. (2009) The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients. Target Oncol 4, 235–252.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Campos-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brumbaugh, K. et al. (2011). Overview of the Generation, Validation, and Application of Phosphosite-Specific Antibodies. In: Kalyuzhny, A. (eds) Signal Transduction Immunohistochemistry. Methods in Molecular Biology, vol 717. Humana Press. https://doi.org/10.1007/978-1-61779-024-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-024-9_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-023-2

  • Online ISBN: 978-1-61779-024-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics