Skip to main content

Molecular Library Design Using Multi-Objective Optimization Methods

  • Protocol
  • First Online:
Chemical Library Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 685))

Abstract

Advancements in combinatorial chemistry and high-throughput screening technology have enabled the synthesis and screening of large molecular libraries for the purposes of drug discovery. Contrary to initial expectations, the increase in screening library size, typically combined with an emphasis on compound structural diversity, did not result in a comparable increase in the number of promising hits found. In an effort to improve the likelihood of discovering hits with greater optimization potential, more recent approaches attempt to incorporate additional knowledge to the library design process to effectively guide the search. Multi-objective optimization methods capable of taking into account several chemical and biological criteria have been used to design collections of compounds satisfying simultaneously multiple pharmaceutically relevant objectives. In this chapter, we present our efforts to implement a multi-objective optimization method, MEGALib, custom-designed to the library design problem. The method exploits existing knowledge, e.g. from previous biological screening experiments, to identify and profile molecular fragments used subsequently to design compounds compromising the various objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ekins, S., Boulanger, B., Swaan, P. W., Hupcey, M. A. (2002) Towards a new age of virtual ADME/TOX and multidimensional drug discovery. J Comput Aided Mol Des 16, 381–401.

    Article  PubMed  CAS  Google Scholar 

  2. Agrafiotis, D. K., Lobanov, V. S., Salemme, F. R. (2002) Combinatorial informatics in the post-genomics era. Nat Rev Drug Discov 1, 337–346.

    Article  PubMed  CAS  Google Scholar 

  3. Baringhaus, K. –H., Matter, H. (2004) Efficient strategies for lead optimization by simultaneously addressing affinity, selectivity and pharmacokinetic parameters, in (Oprea, T., ed.) Chemoinformatics in Drug Discovery. Wiley-VCH, Weinheim, Germany, pp. 333–379.

    Google Scholar 

  4. Nicolaou, C. A., Brown, N., Pattichis, C. S. (2007) Molecular optimization using computational multi-objective methods. Curr Opin Drug Discov Dev 10, 316–324.

    CAS  Google Scholar 

  5. Soltanshahi, F., Mansley, T. E., Choi, S., Clark, R. D. (2006) Balancing focused combinatorial libraries based on multiple GPCR ligands. J Comput Aided Mol Des 20, 529–538.

    Article  PubMed  CAS  Google Scholar 

  6. Gillet, V. J., Willet, P., Fleming, P. J., Green, D. V. (2002) Designing focused libraries using MoSELECT. J Mol Graph Model 20, 491–498.

    Article  PubMed  CAS  Google Scholar 

  7. Gillet, V. J., Khatib, W., Willett, P., Fleming, P. J., Green, D. V. (2002) Combinatorial library design using a multiobjective genetic algorithm. J Chem Inf Comput Sci 42, 375–385.

    Article  PubMed  CAS  Google Scholar 

  8. Agrafiotis, D. K. (2000) Multiobjective optimization of combinatorial libraries. Mol Divers 5, 209–230.

    Article  CAS  Google Scholar 

  9. Nicolaou, C. A., Apostolakis, J., Pattichis, C. S. (2009) De novo drug design using multi-objective evolutionary graphs. J Chem Inf Model 49, 295–307.

    Article  PubMed  CAS  Google Scholar 

  10. Coello Coello, C. A. (2002) Evolutionary multiobjective optimization: a critical review, in (Sarker, R., Mohammadian, M., Yao, X. eds.) Evolutionary Optimization. New York: Springer 48, pp. 117–146.

    Google Scholar 

  11. Yann, C., Siarry, P. (eds.) (2004) Multiobjective Optimization: Principles and Case Studies, Springer, Berlin, Germany.

    Google Scholar 

  12. Fonseca, C. M., Fleming, P. J. (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I: a unified formulation. IEEE Trans Syst Man Cybernet 28, 26–37.

    Article  Google Scholar 

  13. Zitzler, E., Thiele, L. (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3, 257–271.

    Article  Google Scholar 

  14. Gillet, V. J. (2004) Designing combinatorial libraries optimized on multiple objectives in methods in molecular biology, in (Bajorath, J., ed.) Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery. Humana Press, Totowa, NJ, 275, pp. 335–354.

    Google Scholar 

  15. Gillet, V. J., Willett, P., Bradshaw, J., Green, D. V. S. (1999) Selecting combinatorial libraries to optimize diversity and physical properties. J Chem Inf Comput Sci 39, 169–177.

    Article  CAS  Google Scholar 

  16. Zheng, W., Hung, S. T., Saunders, J. T., Seibel, G. L. (2000) PICCOLO: a tool for combinatorial library design via multicriterion optimization. Pac Symp Biocomput 5, 585–596.

    Google Scholar 

  17. Bemis, A. G. W., Murcko, M. A. (1999) Designing libraries with CNS activity. J Med Chem 42, 4942–4951.

    Article  PubMed  Google Scholar 

  18. Wright, T., Gillet, V. J., Green, D. V., Pickett, S. D. (2003) Optimizing the size and configuration of combinatorial libraries. J Chem Inf Comput Sci 43, 381–390.

    Article  PubMed  CAS  Google Scholar 

  19. Noesis Chemoinformatics, Ltd. http://www.noesisinformatics.com (accessed August 12, 2009).

  20. MoDest. http://www.chil2.de (accessed June 30, 2009).

  21. OpenEye, Inc. http://www.eyesopen.com (accessed July 3, 2009).

  22. Nicolaou, C. A., Pattichis, C. S. (2006) Molecular substructure mining approaches for computer-aided drug discovery: a review. Proceedings of the 2006 ITAB Conference, October 26–28, Ioannina, Greece.

    Google Scholar 

  23. Lewell, X. O., Budd, D. B., Watson, S. P., Hann, M. M. (1998) RECAP – Retrosynthetic Combinatorial Analysis Procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38, 511–522.

    Article  PubMed  CAS  Google Scholar 

  24. Barone R., Chanon, M. (2001) A new and simple approach to chemical complexity. Application to the synthesis of natural products. J Chem Inf Comput Sci 41, 269–272.

    Article  PubMed  CAS  Google Scholar 

  25. Angelis, M. D., Stossi F., Waibel M., Katzenellenbogen, B. S., Katzenellenbogen, J. A. (2005) Isocoumarins as estrogen receptor beta selective ligands: isomers of isoflavone phytoestrogens and their metabolites. Bioorg Med Chem 13, 6529–6542.

    Article  PubMed  Google Scholar 

  26. Wheeler, D. L., et al. (2006) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 34, 173–180.

    Article  Google Scholar 

  27. Wild, D. J., Blankley, C. J. (2000) Comparison of 2D fingerprint types and hierarchy level selection methods for structural grouping using wards clustering. J Chem Inf Comput Sci 40, 155–162.

    Article  PubMed  CAS  Google Scholar 

  28. Kearsley, S. K., Sallamack, S., Fluder, E. M., Andose, J. D., Mosley, R. T., Sheridan, R. P. (1996) Chemical similarity using physiochemical property descriptors. J Chem Inf Comput Sci 36, 118–127.

    Article  CAS  Google Scholar 

  29. Tietze, S., Apostolakis, J. (2007) GlamDock: development and validation of a new docking tool on several thousand protein-ligand complexes. J Chem Inf Model 47, 1657–1672.

    Article  PubMed  CAS  Google Scholar 

  30. Willet, P., Barnard, J. M., Downs, G. M. (1998) Chemical similarity searching. J Chem Inf Comput Sci 39, 983–996.

    Google Scholar 

  31. Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability. Drug discovery and development settings. Adv Drug Discovery Rev 23, 3–25.

    Article  CAS  Google Scholar 

  32. Prien, O. (2005) Target-family-oriented focused libraries for kinases – conceptual design aspects and commercial availability. ChemBioChem 6, 500–505.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos A. Nicolaou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Science+Business Media, LLC

About this protocol

Cite this protocol

Nicolaou, C.A., Kannas, C.C. (2011). Molecular Library Design Using Multi-Objective Optimization Methods. In: Zhou, J. (eds) Chemical Library Design. Methods in Molecular Biology, vol 685. Humana Press. https://doi.org/10.1007/978-1-60761-931-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-931-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-930-7

  • Online ISBN: 978-1-60761-931-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics