Skip to main content

Membrane Protein Dynamics from Femtoseconds to Seconds

  • Protocol
  • First Online:
Membrane Protein Structure Determination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 654))

Abstract

Membrane proteins play a key role in energy conversion, transport, signal recognition, transduction, and other fundamental biological processes. Despite considerable progress in experimental techniques, the determination of structure and dynamics of membrane proteins still represents a great challenge. Computer simulation methods are becoming an increasingly important tool not only in the interpretation of experiments but also in the prediction of membrane protein dynamics. In the present review, we give a brief introduction to molecular modeling techniques currently used to explore protein dynamics on time scales ranging from femtoseconds to microseconds. We then describe a few recent example applications of these techniques to membrane proteins. In conclusion, we also discuss some of the newest developments in simulation methodology that have the potential to further extend the time scale accessible to explore (membrane) protein dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Veldhuizen EJ, Haagsman HP (2000) Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta 1467:255–270

    Article  PubMed  CAS  Google Scholar 

  2. Bernstein FC, Koetzle TF, Williams GJ et al (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  4. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980

    Article  PubMed  CAS  Google Scholar 

  5. White SH (2004) The progress of membrane protein structure determination. Protein Sci 13:1948–1949

    Article  PubMed  CAS  Google Scholar 

  6. Leach AR (2001) Molecular modelling: principles and applications. Pearson Education, Harlow

    Google Scholar 

  7. Pauling L, Wilson EBJ (1985) Introduction to quantum mechanics with applications to chemistry. Courier Dover, New York

    Google Scholar 

  8. Neese F (2003) An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J Comput Chem 24:1740–1747

    Article  PubMed  CAS  Google Scholar 

  9. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  PubMed  CAS  Google Scholar 

  10. Messiah A (1963) Quantum mechanics. Wiley, New York

    Google Scholar 

  11. Jensen F (2006) Introduction to computational chemistry. Wiley, New York

    Google Scholar 

  12. Mulholland AJ (2007) Chemical accuracy in QM/MM calculations on enzyme-catalysed reactions. Chem Cent J 1:19

    Article  PubMed  Google Scholar 

  13. Mulholland AJ (2005) Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discov Today 10:1393–1402

    Article  PubMed  CAS  Google Scholar 

  14. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  PubMed  CAS  Google Scholar 

  15. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488

    Article  PubMed  CAS  Google Scholar 

  16. Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    Article  PubMed  CAS  Google Scholar 

  17. Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253:694–698

    Article  PubMed  CAS  Google Scholar 

  18. Shillcock JC, Lipowsky R (2006) The computational route from bilayer membranes to vesicle fusion. J Phys Condens Matter 18:S1191–S1219

    Article  PubMed  CAS  Google Scholar 

  19. Sperotto MM, May S, Baumgaertner A (2006) Modelling of proteins in membranes. Chem Phys Lipids 141:2–29

    Article  PubMed  CAS  Google Scholar 

  20. Venturoli M, Sperotto MM, Kranenburg M, Smit B (2006) Mesoscopic models of biological membranes. Phys Rep 437:1–54

    Article  CAS  Google Scholar 

  21. Müller M, Katsov K, Schick M (2006) Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys Rep 434:113–176

    Article  Google Scholar 

  22. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: Extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  23. Grossfield A, Feller SE, Pitman MC (2007) Convergence of molecular dynamics simulations of membrane proteins. Proteins 67:31–40

    Article  PubMed  CAS  Google Scholar 

  24. Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol 15:423–431

    Article  PubMed  CAS  Google Scholar 

  25. Kandt C, Mátyus E, Tieleman DP (2008) Protein lipid interactions from a molecular dynamics simulation point of view. In: Nag K (ed) Structure & dynamics of membranous interfaces. Wiley-Interscience, Hoboken, NJ, pp 267–282

    Google Scholar 

  26. Lindahl E, Sansom MS (2008) Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol 18:425–431

    Article  PubMed  CAS  Google Scholar 

  27. Doyle DA, Morais Cabral J, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  28. Jiang YX, Lee A, Chen JY, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  PubMed  CAS  Google Scholar 

  29. Jiang YX, Lee A, Chen JY et al (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  PubMed  CAS  Google Scholar 

  30. Kuo AL, Gulbis JM, Antcliff JF et al (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  PubMed  CAS  Google Scholar 

  31. Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  32. Bucher D, Raugei S, Guidoni L et al (2006) Polarization effects and charge transfer in the KcsA potassium channel. Biophys Chem 124:292–301

    Article  PubMed  CAS  Google Scholar 

  33. Bucher D, Guidoni L, Rothlisberger U (2007) The protonation state of the Glu-71/Asp-80 residues in the KcsA potassium channel: A first-principles QM/MM molecular dynamics study. Biophys J 93:2315–2324

    Article  PubMed  CAS  Google Scholar 

  34. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21:90–113

    Article  PubMed  CAS  Google Scholar 

  35. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  36. Rasmussen SGF, Choi H-J, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  37. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293:1499–1503

    Article  PubMed  CAS  Google Scholar 

  38. Kandt C, Gerwert K, Schlitter J (2005) Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Proteins 58:528–537

    Article  PubMed  CAS  Google Scholar 

  39. Kandt C, Schlitter J, Gerwert K (2004) Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys J 86:705–717

    Article  PubMed  CAS  Google Scholar 

  40. Zgrabli G, Voãtchovsky K, Kindermann M, Haacke S, Chergui M (2005) Ultrafast excited state dynamics of the protonated Schiff base of all-trans retinal in solvents. Biophys J 88:2779–2788

    Article  Google Scholar 

  41. Schenkl S, van Mourik F, van der Zwan G, Haacke S, Chergui M (2005) Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Science 309:917–920

    Article  PubMed  CAS  Google Scholar 

  42. Okada T, Ernst OP, Palczewski K, Hofmann KP (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 26:318–324

    Article  PubMed  CAS  Google Scholar 

  43. Meng EC, Bourne HR (2001) Receptor activation: what does the rhodopsin structure tell us? Trends Pharmacol Sci 22:587–593

    Article  PubMed  CAS  Google Scholar 

  44. Lemaitre V, Yeagle P, Watts A (2005) Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin. Biochemistry 44:12667–12680

    Article  PubMed  CAS  Google Scholar 

  45. Isin B, Rader AJ, Dhiman HK, Klein-Seetharaman J, Bahar I (2006) Predisposition of the dark state of rhodopsin to functional changes in structure. Proteins 65:970–983

    Article  PubMed  CAS  Google Scholar 

  46. Martinez-Mayorga K, Pitman MC, Grossfield A, Feller SE, Brown MF (2006) Retinal counterion switch mechanism in vision evaluated by molecular simulations. J Am Chem Soc 128:16502–16503

    Article  PubMed  CAS  Google Scholar 

  47. Crozier PS, Stevens MJ, Woolf TB (2007) How a small change in retinal leads to G-protein activation: initial events suggested by molecular dynamics calculations. Proteins 66:559–574

    Article  PubMed  CAS  Google Scholar 

  48. Kong Y, Karplus M (2007) The signaling pathway of rhodopsin. Structure 15:611–623

    Article  PubMed  CAS  Google Scholar 

  49. Grossfield A, Feller SE, Pitman MC (2006) A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc Natl Acad Sci U S A 103:4888–4893

    Article  PubMed  CAS  Google Scholar 

  50. Cordomi A, Perez JJ (2007) Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers. J Phys Chem B 111:7052–7063

    Article  PubMed  CAS  Google Scholar 

  51. Periole X, Huber T, Marrink SJ, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132

    Article  PubMed  CAS  Google Scholar 

  52. Niv MY, Filizola M (2008) Influence of oligomerization on the dynamics of G-protein coupled receptors as assessed by normal mode analysis. Proteins 71:575–586

    Article  PubMed  CAS  Google Scholar 

  53. Yan ECY, Kazmi MA, Ganim Z et al (2003) Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc Natl Acad Sci U S A 100:9262–9267

    Article  PubMed  CAS  Google Scholar 

  54. Ludeke S, Beck R, Yan ECY, Sakmar TP, Siebert F, Vogel R (2005) The role of Glu181 in the photoactivation of rhodopsin. J Mol Biol 353:345–356

    Article  PubMed  Google Scholar 

  55. Ivetac A, Campbell JD, Sansom MSP (2007) Dynamics and function in a bacterial ABC transporter: simulation studies of the BtuCDF system and its components. Biochemistry 46:2767–2778

    Article  PubMed  CAS  Google Scholar 

  56. Sonne J, Kandt C, Peters GH, Hansen FY, Jensen M, Tieleman DP (2007) Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD. Biophys J 92:2727–2734

    Article  PubMed  CAS  Google Scholar 

  57. Arkin IT, Xu H, Mù J et al (2007) Mechanism of Na+/H+ antiporting. Science 317:799–803

    Article  PubMed  CAS  Google Scholar 

  58. Law CJ, Almqvist J, Bernstein A et al (2008) Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J Mol Biol 378:826–837

    Article  CAS  Google Scholar 

  59. Lu WC, Wang CZ, Yu EW, Ho KM (2006) Dynamics of the trimeric AcrB transporter protein inferred from a B-factor analysis of the crystal structure. Proteins 62:152–158

    Article  PubMed  CAS  Google Scholar 

  60. Holyoake J, Sansom MSP (2007) Conformational change in an MFS protein: MD simulations of LacY. Structure 15:873–884

    Article  PubMed  CAS  Google Scholar 

  61. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    Article  PubMed  CAS  Google Scholar 

  62. Moussatova A, Kandt C, O’Mara ML, Tieleman DP (2008) ATP-binding cassette transporters in Escherichia coli. Biochim Biophys Acta 1778:1757–1771

    Article  PubMed  CAS  Google Scholar 

  63. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908

    Article  PubMed  CAS  Google Scholar 

  64. Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  PubMed  CAS  Google Scholar 

  65. Inoue H, Noumi T, Tsuchiya T, Kanazawa H (1995) Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli. FEBS Lett 363:264–268

    Article  PubMed  CAS  Google Scholar 

  66. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  PubMed  CAS  Google Scholar 

  67. Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77:3227–3233

    Article  PubMed  CAS  Google Scholar 

  68. Wells DB, Abramkina V, Aksimentiev A (2007) Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics. J Chem Phys 127:125101–125110

    Article  PubMed  Google Scholar 

  69. Prince SM, Achtman M, Derrick JP (2002) Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis. Proc Natl Acad Sci U S A 99:3417–3421

    Article  PubMed  CAS  Google Scholar 

  70. Cherezov V, Liu W, Derrick JP et al (2008) In meso crystal structure and docking simulations suggest an alternative proteoglycan binding site in the OpcA outer membrane adhesin. Proteins 71:24–34

    Article  PubMed  CAS  Google Scholar 

  71. Luan B, Caffrey M, Aksimentiev A (2007) Structure refinement of the OpcA adhesin using molecular dynamics. Biophys J 93:3058–3069

    Article  PubMed  CAS  Google Scholar 

  72. Shi N, Ye S, Alam A, Chen L, Jiang Y (2006) Atomic structure of a Na+- and K+-conducting channel. Nature 440:570–574

    Article  PubMed  CAS  Google Scholar 

  73. Noskov SY, Roux B (2007) Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. J Gen Physiol 129:135–143

    Article  PubMed  CAS  Google Scholar 

  74. Sperotto MM, Mouritsen OG (1991) Monte-Carlo simulation studies of lipid order parameter profiles near integral membrane-proteins. Biophys J 59:261–270

    Article  PubMed  CAS  Google Scholar 

  75. Kranenburg M, Venturoli M, Smit B (2003) Molecular simulations of mesoscopic bilayer phases. Phys Rev E 67

    Google Scholar 

  76. Venturoli M, Smit B, Sperotto MM (2005) Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J 88:1778–1798

    Article  PubMed  CAS  Google Scholar 

  77. Ramakrishnan M, Qu J, Pocanschi CL, Kleinschmidt JH, Marsh D (2005) Orientation of beta-barrel proteins OmpA and FhuA in lipid membranes. chain length dependence from infrared dichroism. Biochemistry 44:3515–3523

    Article  PubMed  CAS  Google Scholar 

  78. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  79. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI forcefield: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  80. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  PubMed  CAS  Google Scholar 

  81. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  PubMed  CAS  Google Scholar 

  82. Cruickshank CC, Minchin RF, Le Dain AC, Martinac B (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73:1925–1931

    Article  PubMed  CAS  Google Scholar 

  83. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  PubMed  CAS  Google Scholar 

  84. Yefimov S, van der Giessen E, Onck PR, Marrink SJ (2008) Mechanosensitive membrane channels in action. Biophys J 94:2994–3002

    Article  PubMed  CAS  Google Scholar 

  85. Duan Y, Pa K (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744

    Article  PubMed  CAS  Google Scholar 

  86. Zagrovic B, Snow CD, Shirts MR, Pande VS (2002) Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. J Mol Biol 324:1051

    Article  CAS  Google Scholar 

  87. Monticelli L, Tieleman DP, Colombo G (2005) Mechanism of helix nucleation and propagation: microscopic view from microsecond time scale MD simulations. J Phys Chem B 109:20064–20067

    Article  PubMed  CAS  Google Scholar 

  88. Munoz V, Thompson PA, Hofrichter J, Eaton WA (1997) Folding dynamics and mechanism of beta-hairpin formation. Nature 390:196–199

    Article  PubMed  CAS  Google Scholar 

  89. Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization – the 2-stage model. Biochemistry 29:4031–4037

    Article  PubMed  CAS  Google Scholar 

  90. Tamm LK, Hong H, Liang BY (2004) Folding and assembly of beta-barrel membrane proteins. Biochim Biophys Acta 1666:250–263

    Article  PubMed  CAS  Google Scholar 

  91. Bond PJ, Sansom MSP (2006) Insertion and assembly of membrane proteins via simulation. J Am Chem Soc 128:2697–2704

    Article  PubMed  CAS  Google Scholar 

  92. Deol SS, Domene C, Bond PJ, Sansom MSP (2006) Anionic phospholipid interactions with the potassium channel KcsA: simulation studies. Biophys J 90:822–830

    Article  PubMed  CAS  Google Scholar 

  93. Im W, Feig M, Brooks CL III (2003) An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 85:2900–2918

    Article  PubMed  CAS  Google Scholar 

  94. Ayton G, Bardenhagen SG, McMurtry P, Sulsky D, Voth GA (2001) Interfacing continuum and molecular dynamics: an application to lipid bilayers. J Chem Phys 114:6913–6924

    Article  CAS  Google Scholar 

  95. Villa E, Balaeff A, Mahadevan L, Schulten K (2004) Multiscale method for simulating protein–DNA complexes. Multiscale Model Simul 2:527–553

    Article  CAS  Google Scholar 

  96. Villa E, Balaeff A, Schulten K (2005) Structural dynamics of the lac repressor–DNA complex revealed by a multiscale simulation. Proc Natl Acad Sci U S A 102:6783–6788

    Article  PubMed  CAS  Google Scholar 

  97. Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048

    Article  PubMed  CAS  Google Scholar 

  98. Lyman E, Ytreberg FM, Zuckerman DM (2006) Resolution exchange simulation. Phys Rev Lett 96:028105

    Article  PubMed  Google Scholar 

  99. Lyman E, Zuckerman DM (2006) Resolution exchange simulation with incremental coarsening. J Chem Theory Comput 2:656–666

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Frank Wennmohs and Emppu Salonen for their fruitful discussions. This work is supported by the Academy of Finland and its Center of Excellence, and by the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen. CK is a junior research group leader funded by the NRW Rückkehrerprogramm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Monticelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kandt, C., Monticelli, L. (2010). Membrane Protein Dynamics from Femtoseconds to Seconds. In: Lacapère, JJ. (eds) Membrane Protein Structure Determination. Methods in Molecular Biology, vol 654. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-762-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-762-4_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-761-7

  • Online ISBN: 978-1-60761-762-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics