Skip to main content

From Electron Microscopy Maps to Atomic Structures Using Normal Mode-Based Fitting

  • Protocol
  • First Online:
Membrane Protein Structure Determination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 654))

Abstract

Electron microscopy (EM) has made possible to solve the structure of many proteins. However, the resolution of some of the EM maps is too low for interpretation at the atomic level, which is particularly important to describe function. We describe methods that combine low-resolution EM data with atomic structures for different conformations of the same protein in order to produce atomic models compatible with the EM map.

We illustrate these methods with EM data from decavanadate-induced tubular crystals of a pseudo-phosphorylated intermediate of Ca-ATPase and the various atomic structures of other intermediates available in the Protein Data Bank (PDB). Determination of atomic structure permits not only to analyse protein–protein interactions in the crystals, but also to localize residues in the proximity of the crystallizing agent both within Ca-ATPase and between Ca-ATPase molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Electron Microscopy Data Bank. http://www.emdatabank.org/

  2. Volkmann N, Hanein D (1999) Quantitative fitting of atomic models into observed densities derived by electron microscopy. J Struct Biol 125:176–184

    Article  PubMed  CAS  Google Scholar 

  3. Roseman AM (2000) Docking structures of domains into maps from cryo-electron microscopy using local correlation. Acta Crystallogr D Biol Crystallogr 56:1332–1340

    Article  PubMed  CAS  Google Scholar 

  4. Rossmann MG (2000) Fitting atomic models into electron-microscopy maps. Acta Crystallogr D Biol Crystallogr 56:1341–1349

    Article  PubMed  CAS  Google Scholar 

  5. Wriggers W, Chacon P (2001) Modeling tricks and fitting techniques for multiresolution structures. Structure 9:779–788

    Article  PubMed  CAS  Google Scholar 

  6. Chacon P, Wriggers W (2002) Multi-resolution contour-based fitting of macromolecular structures. J Mol Biol 317:375–384

    Article  PubMed  CAS  Google Scholar 

  7. Navaza JJ, Lepault F, Rey A, Alvarez-Rua C, Borge J (2002) On the fitting of model electron densities into EM reconstructions: a reciprocal-space formulation. Acta Crystallogr D Biol Crystallogr 58:1820–1825

    Article  PubMed  CAS  Google Scholar 

  8. Wu X, Milne JLS, Borgnia MJ, Rostapshov AV, Subramaniam S, Brooks BR (2002) A core-weighted fitting method for docking atomic structures into low-resolution maps: application to cryo-electron microscopy. J Struct Biol 141:63–76

    Article  Google Scholar 

  9. Tama F, Miyashita O, Brooks CL (2004) Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. J Mol Biol 337:985–999

    Article  PubMed  CAS  Google Scholar 

  10. Hinsen K, Reuter N, Navaza J, Stokes DL, Lacapère J-J (2005) Normal mode-based fitting of atomic structure into electron density maps: application to sarcoplasmic reticulum Ca-ATPase. Biophys J 88:818–827

    Article  PubMed  CAS  Google Scholar 

  11. Schröder GF, Brunger AT, Levitt M (2007) Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15:1630–1641

    Article  PubMed  Google Scholar 

  12. Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Protein structure fitting and refinement guided by cryo-EM density. Structure 16:295–307

    Article  PubMed  CAS  Google Scholar 

  13. Jolley CC, Wells SA, Fromme P, Thorpe MF (2008) Fitting low-resolution cryo-EM maps of proteins using constrained geometric simulations. Biophys J 94:1613–1621

    Article  PubMed  CAS  Google Scholar 

  14. Møller JV, Jull B, Le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    Article  PubMed  Google Scholar 

  15. Forge V, Mintz E, Guillain F (1993) Ca binding to sarcoplasmic reticulum ATPase revisited. I. Mechanism of affinity and cooperativity modulation by H and Mg. J Biol Chem 268:10953–10960

    PubMed  CAS  Google Scholar 

  16. Yu X, Carroll S, Rigaud J, Inesi G (1993) H countertransport and electrogenicity of the sarcoplasmic reticulum Ca pump in reconstituted proteoliposomes. Biophys J 64:1232–1242

    Article  PubMed  CAS  Google Scholar 

  17. Buoninsegni TF, Bartolommei G, Moncelli MR, Inesi G, Guidelli R (2004) Time-resolved charge translocation by sarcoplasmic reticulum Ca-ATPase measured on a solid supported membrane. Biophys J 86:3671–3686

    Article  CAS  Google Scholar 

  18. Stokes DL, Green NM (2003) Structure and function of the calcium pump. Annu Rev Biophys Biomol Struct 32:445–468

    Article  PubMed  CAS  Google Scholar 

  19. Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–92

    Article  PubMed  CAS  Google Scholar 

  20. Inesi G, Lewis DMH, Prasad A, Toyoshima C (2006) Concerted conformational effects of Ca and ATP are required for activation of sequential reactions in the Ca-ATPase (SERCA) catalytic cycle. Biochemistry 45:13769–13778

    Article  PubMed  CAS  Google Scholar 

  21. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  22. Sorensen T, Moller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675

    Article  PubMed  CAS  Google Scholar 

  23. Toyoshima C, Mitzutani T (2004) Crystal structure of the calcium pump with a bond ATP analogue. Nature 430:529–535

    Article  PubMed  CAS  Google Scholar 

  24. Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432:361–368

    Article  PubMed  CAS  Google Scholar 

  25. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  PubMed  CAS  Google Scholar 

  26. Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, Toyoshima C (2005) Structural role of countertransport revealed in Ca-ATPase pump crystal structure in the absence of Ca. Proc Natl Acad Sci USA 102:14489–14496

    Article  PubMed  CAS  Google Scholar 

  27. Jensen A-M, Sorensen T-L, Olesen C, Moller JV, Nissen P (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25:2305–2314

    Article  PubMed  Google Scholar 

  28. Olesen C, Sorensen T, Nielsen RK, Moller JV, Nissen P (2004) Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306:2251–2255

    Article  PubMed  CAS  Google Scholar 

  29. Toyoshima C, Sasabe H, Stokes DL (1993) Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362:467–471

    Article  PubMed  CAS  Google Scholar 

  30. Zhang P, Toyoshima C, Yonekura K, Green NM, Stokes DL (1998) Structure of the calcium pump from sarcoplasmic reticulum at 8 Å resolution. Nature 392:835–839

    Article  PubMed  CAS  Google Scholar 

  31. Xu C, Rice WJ, He W, Stokes DL (2002) A structural model for the catalytic cycle of Ca-ATPase. J Mol Biol 316:201–211

    Article  PubMed  CAS  Google Scholar 

  32. Stokes DL, Delavoie F, Rice WJ, Champeil P, McIntosh D, Lacapère J-J (2005) Structural studies of a stabilized phosphoenzyme intermediate of Ca-ATPase. J Biol Chem 280:18063–18072

    Article  PubMed  CAS  Google Scholar 

  33. McIntosh D, Montigny C, Champeil P (2008) Unexpected phosphoryl transfer from Asp351 to fluorescein attached to Lys515 in sarcoplasmic reticulum Ca-ATPase. Biochemistry 47:6386–6393

    Article  PubMed  CAS  Google Scholar 

  34. Hinsen K (2000) The molecular modeling toolkit: a new approach to molecular simulations. J Comp Chem 21:79–85

    Article  CAS  Google Scholar 

  35. Hinsen K, Petrescu AJ, Dellerue S, Bellissent-Funel M-C, Kneller GR (2000) Harmonicity in slow protein dynamics. Chem Phys 261:25–37

    Article  CAS  Google Scholar 

  36. Hinsen K ScientificPython. http://dirac.cnrs-orleans.fr/ScientificPython/

  37. Hinsen K, Thomas A, Field MJ (1999) Analysis of domain motions in large proteins. Proteins 34:369–382

    Article  PubMed  CAS  Google Scholar 

  38. Hinsen K DomainFinder. http://dirac.cnrs-orleans.fr/DomainFinder/

  39. Reuter N, Hinsen K, Lacapere J-J (2003) Transconformations of the SERCA1 Ca-ATPase: a normal mode study. Biophys J 85:2186–2197

    Article  PubMed  CAS  Google Scholar 

  40. Ma H, Lewis D, Xu C, Inesi G, Toyoshima C (2005) Functional and structural roles of critical amino acids within the “N”, “P”, and “A” domains of the Ca-ATPase (SERCA) headpiece. Biochemistry 44:8090–8100

    Article  PubMed  CAS  Google Scholar 

  41. Clausen JD, McIntosh DB, Anthonisen AN, Woolley DG, Vilsen B, Andersen JP (2007) ATP-binding modes and functionally important interdomain bonds of sarcoplasmic reticulum Ca2+-ATPase revealed by mutation of glycine 438, glutamate 439, and arginine 678. J Biol Chem 282:20686–97

    Article  PubMed  CAS  Google Scholar 

  42. Ferreira da Silva JL, Minas da Piedade MF, Duarte MT (2003) Decavanadates: a building block for supramolecular assemblies. Inorganica Chim Acta 356:222–242

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Professor D.L. Stokes for generously providing the EM map. This work was supported by CNRS (Centre National de la Recherche Scientifique) and CEA (Commissariat à l’Energie Atomique).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Hinsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hinsen, K., Beaumont, E., Fournier, B., Lacapère, JJ. (2010). From Electron Microscopy Maps to Atomic Structures Using Normal Mode-Based Fitting. In: Lacapère, JJ. (eds) Membrane Protein Structure Determination. Methods in Molecular Biology, vol 654. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-762-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-762-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-761-7

  • Online ISBN: 978-1-60761-762-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics