Skip to main content

Structure Determination of Membrane Protein by Both Cryo-Electron Tomography and Single Particle Analysis

  • Protocol
  • First Online:
Membrane Protein Structure Determination

Abstract

The structure determination of membrane protein in lipid environment can be carried out using cryo-electron microscopy combined with the recent development of data collection and image processing. We describe a protocol to study assemblies or stacks of membrane protein reconstituted into a lipid membrane using both cryo-electron tomography and single particle analysis, which is an alternative approach to electron crystallography for solving 3D structure. We show the organization of the successive layers of OprM molecules revealing the protein–protein interactions between OprM molecules of two successive lipid bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheong GW, Young HS, Ogawa H, Toyoshima C, Stokes DL (1996) Lamellar stacking in three-dimensional crystals of Ca(2+)-ATPase from sarcoplasmic reticulum. Biophys J 70:1689–1699

    Article  PubMed  CAS  Google Scholar 

  2. Shi D, Lewis MR, Young HS, Stokes DL (1998) Three-dimensional crystals of Ca2+-ATPase from sarcoplasmic reticulum: merging electron diffraction tilt series and imaging the (h, k, 0) projection. J Mol Biol 284:1547–1564

    Article  PubMed  CAS  Google Scholar 

  3. Rubinstein JL (2007) Structural analysis of membrane protein complexes by single particle electron microscopy. Methods 41:409–416

    Article  PubMed  CAS  Google Scholar 

  4. Gregorini M, Wang J, Xie XS, Milligan RA, Engel A (2007) Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. J Struct Biol 158:445–454

    Article  PubMed  CAS  Google Scholar 

  5. Nakagawa T, Cheng Y, Ramm E, Sheng M, Walz T (2005) Structure and different conformational states of native AMPA receptor complexes. Nature 433:545–549

    Article  PubMed  CAS  Google Scholar 

  6. McDevitt CA, Collins RF, Conway M, Modok S, Storm J, Kerr ID, Ford RC, Callaghan R (2006) Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 14:1623–1632

    Article  PubMed  CAS  Google Scholar 

  7. Chami M, Steinfels E, Orelle C, Jault JM, Di Pietro A, Rigaud J-L, Marco S (2002) Three-dimensional structure by cryo-electron microscopy of YvcC, an homodimeric ATP-binding cassette transporter from Bacillus subtilis. J Mol Biol 315:1075–1085

    Article  PubMed  CAS  Google Scholar 

  8. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684

    Article  PubMed  CAS  Google Scholar 

  9. Shuttleworth CA, Kielty CM (2001) The supramolecular organization of fibrillin-rich microfibrils. J Cell Biol 152:1045–1056

    Article  PubMed  Google Scholar 

  10. Holmes DF, Gilpin CJ, Baldock C, Ziese U, Koster AJ, Kadler KE (2001) Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. Proc Natl Acad Sci 98:7307–7312

    Article  PubMed  CAS  Google Scholar 

  11. Bohm J, Lambert O, Frangakis AS, Letellier L, Baumeister W, Rigaud JL (2001) FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. Curr Biol 11:1168–1175

    Article  PubMed  CAS  Google Scholar 

  12. Winkler H, Taylor KA (1999) Multivariate statistical analysis of three-dimensional cross-bridge motifs in insect flight muscle. Ultramicroscopy 77:141–152

    Article  CAS  Google Scholar 

  13. Chen LF, Blanc E, Chapman MS, Taylor KA (2001) Real space refinement of acto-myosin structures from sectioned muscle. J Struct Biol 133:221–232

    Article  PubMed  CAS  Google Scholar 

  14. Förster F, Medalia O, Zauberman N, Baumeister W, Fass D (2005) Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc Natl Acad Sci USA 102:4729–4734

    Article  PubMed  Google Scholar 

  15. Bostina M, Bubeck D, Schwartz C, Nicastro D, Filman DJ, Hogle JM (2007) Single particle cryoelectron tomography characterization of the structure and structural variability of poliovirus-receptor-membrane complex at 30 Å resolution. J Struct Biol 160:200–210

    Article  PubMed  CAS  Google Scholar 

  16. Zanetti G, Briggs JA, Grünewald K, Sattentau QJ, Fuller SD (2006) Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog 2:e83

    Article  PubMed  Google Scholar 

  17. Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grisé H, Ofek GA, Taylor KA, Roux KH (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:847–852

    Article  PubMed  CAS  Google Scholar 

  18. Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 7:1154–1160

    Article  Google Scholar 

  19. Al-Amoudi A, Díez DC, Betts MJ, Frangakis AS (2007) The molecular architecture of cadherins in native epidermal desmosomes. Nature 450:832–837

    Article  PubMed  CAS  Google Scholar 

  20. Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S, Nakagawa A, Nakae T (2004) Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 279:52816–52819

    Article  PubMed  CAS  Google Scholar 

  21. Lambert O, Benabdelhak H, Chami M, Jouan L, Nouaille E, Ducruix A, Brisson A (2005) Trimeric structure of OprN and OprM efflux proteins from Pseudomonas aeruginosa, by 2D electron crystallography. J Struct Biol 150:50–57

    Article  PubMed  CAS  Google Scholar 

  22. Zheng QS, Braunfeld MB, Sedat JW, Agard DA (2004) An improved strategy for automated electron microscopic tomography. J Struct Biol 147:91–101

    Article  PubMed  Google Scholar 

  23. Rigaud J-L, Mosser G, Lacapere J-J, Olofsson A, Levy D, Ranck J-L (2005) Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J Struct Biol 118:226–235

    Article  Google Scholar 

  24. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, Mc Dowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  PubMed  CAS  Google Scholar 

  25. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352

    Article  PubMed  CAS  Google Scholar 

  26. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  PubMed  CAS  Google Scholar 

  27. Sorzano CO, Marabini R, Velázquez-Muriel J, Bilbao-Castro JR, Scheres SH, Carazo JM, Pascual-Montano A (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204

    Article  PubMed  CAS  Google Scholar 

  28. Förster F, Pruggnaller S, Seybert A, Frangakis AS (2008) Classification of cryo-electron sub-tomograms using constrained correlation. J Struct Biol 161:276–286

    Article  PubMed  Google Scholar 

  29. Schmid MF, Booth CR (2008) Methods for aligning and for averaging 3D volumes with missing data. J Struct Biol 161:243–248

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Achilleas Frangakis for fruitful discussions and for giving us access to the EM facilities of EMBL (Heidelberg) and Pr. A. Ducruix for providing purified membrane protein samples. S. Trépout is recipient of PhD fellowship from French Ministry of Education and Research and Technology (MENRT). This work has been supported in part by Agence Nationale de la Recherche (ANR-06-PCV1-001) and by Conseil Régional d’Aquitaine (20071302007) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Lambert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Trépout, S., Taveau, JC., Lambert, O. (2010). Structure Determination of Membrane Protein by Both Cryo-Electron Tomography and Single Particle Analysis. In: Lacapère, JJ. (eds) Membrane Protein Structure Determination. Methods in Molecular Biology, vol 654. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-762-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-762-4_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-761-7

  • Online ISBN: 978-1-60761-762-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics