Skip to main content

Fluorescent Silica Nanoparticles for Cancer Imaging

  • Protocol
  • First Online:
Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 624))

Abstract

In recent years, fluorescent silica nanoparticles (FSNPs) received immense interest in cancer imaging. FSNPs are a new class of engineered optical probes consisting of silica NPs loaded with fluorescent dye molecules. These probes exhibit some attractive features, such as photostability and brightness, which allow sensitive imaging of cancer cells. In general, FSNPs are chemically synthesized in solution using appropriate silane-based precursors. Fluorescent dye molecules are entrapped during the synthesis process. The synthetic process involves hydrolysis and condensation reactions of silane precursors. Stöber’s sol–gel and water-in-oil (W/O) microemulsion methods are two popular chemical methods that have been used for synthesizing FSNPs. Silica matrix is capable of carrying hundreds of fluorescent dye molecules in each FSNP, resulting in bright fluorescence. In FSNPs, fluorescent molecules are somewhat protected by the surrounding silica layer, resulting in good photostability. For cancer cell imaging, surface modification of FSNPs is often necessary to obtain appropriate surface functional groups to improve NP aqueous dispersibility as well as bioconjugation capability. Using conventional bioconjugate chemistry, cancer cell-specific biomolecules are then attached to the surface-modified FSNPs. For targeting cancer cells, the FSNPs are often conjugated to specific biomolecules such as antibodies, aptamers, and folic acid. In this chapter, different approaches for the FSNP design will be discussed and some representative protocols for FSNP synthesis will be provided. We will also discuss FSNP surface modification and bioconjugation techniques that are useful for cancer cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herr, J. K., Smith, J. E., Medley, C. D., Shangguan, D. H., and Tan, W. H. (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78, 2918–2924.

    Article  CAS  PubMed  Google Scholar 

  2. Smith, J. E., Medley, C. D., Tang, Z. W., Shangguan, D., Lofton, C., and Tan, W. H. (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79, 3075–3082.

    Article  CAS  PubMed  Google Scholar 

  3. Trehin, R., Figueiredo, J. L., Pittet, M. J., Weissleder, R., Josephson, L., and Mahmood, U. (2006) Fluorescent nanoparticle uptake for brain tumor visualization. Neoplasia 8, 302–311.

    Article  CAS  PubMed  Google Scholar 

  4. Bagwe, R. P., Zhao, X. J., and Tan, W. H. (2003) Bioconjugated luminescent nanoparticles for biological applications. J Dispers Sci Technol 24, 453–464.

    Article  CAS  Google Scholar 

  5. Santra, S., Xu, J. S., Wang, K. M. and Tan, W. H. (2004) Luminescent nanoparticle probes for bioimaging. J Nanosci Nanotechnol 4, 590–599.

    Article  CAS  PubMed  Google Scholar 

  6. Tan, W. H., Wang, K. M., He, X. X., Zhao, X. J., Drake, T., Wang, L., and Bagwe, R. P. (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24, 621–638.

    Article  CAS  PubMed  Google Scholar 

  7. Yao, G., Wang, L., Wu, Y. R., Smith, J., Xu, J. S., Zhao, W. J., Lee, E. J., and Tan, W. H. (2006) FloDots: luminescent nanoparticles. Anal Bioanal Chem 385, 518–524.

    Article  CAS  PubMed  Google Scholar 

  8. He, X. X., Duan, J. H., Wang, K. M., Tan, W. H., Lin, X., and He, C. M. (2004) A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J Nanosci Nanotechnol 4, 585–589.

    Article  CAS  PubMed  Google Scholar 

  9. Santra, S., Liesenfeld, B., Dutta, D., Chatel, D., Batich, C. D., Tan, W. H., Moudgil, B. M., and Mericle, R. A. (2005) Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J Nanosci Nanotechnol 5, 899–904.

    Article  CAS  PubMed  Google Scholar 

  10. Santra, S., Zhang, P., Wang, K. M., Tapec, R., and Tan, W. H. (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73, 4988–4993.

    Article  CAS  PubMed  Google Scholar 

  11. Brigger, I., Dubernet, C., and Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54, 631–51.

    Google Scholar 

  12. Reddy, G. R., Bhojani, M. S., McConville, P., Moody, J., Moffat, B. A., Hall, D. E., Kim, G., Koo, Y. E. L., Woolliscroft, M. J., Sugai, J. V., Johnson, T. D., Philbert, M. A., Kopelman, R., Rehemtulla, A., and Ross, B. D. (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12, 6677–6686.

    Article  CAS  PubMed  Google Scholar 

  13. van Vlerken, L. E. and Amiji, M. M. (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3, 205–216.

    Article  PubMed  Google Scholar 

  14. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.

    Article  CAS  PubMed  Google Scholar 

  15. Chan, W. C. W., Maxwell, D. J., Gao, X. H., Bailey, R. E., Han, M. Y., and Nie, S. M. (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13, 40–46.

    Article  CAS  PubMed  Google Scholar 

  16. Gao, X. H., Yang, L. L., Petros, J. A., Marshal, F. F., Simons, J. W., and Nie, S. M. (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16, 63–72.

    Article  CAS  PubMed  Google Scholar 

  17. Smith, A. M., Ruan, G., Rhyner, M. N., and Nie, S. M. (2006) Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng 34, 3–14.

    Article  PubMed  Google Scholar 

  18. Wu, X. Y., Liu, H. J., Liu, J. Q., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N. F., Peale, F., and Bruchez, M. P. (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21, 41–46.

    Article  CAS  PubMed  Google Scholar 

  19. Alivisatos, A. P., Gu, W. W., and Larabell, C. (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7, 55–76.

    Article  CAS  PubMed  Google Scholar 

  20. Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H. (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4, 435–446.

    Article  CAS  PubMed  Google Scholar 

  21. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., and Weiss, S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.

    Article  CAS  PubMed  Google Scholar 

  22. Stroh, M., Zimmer, J. P., Duda, D. G., Levchenko, T. S., Cohen, K. S., Brown, E. B., Scadden, D. T., Torchilin, V. P., Bawendi, M. G., Fukumura, D., and Jain, R. K. (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11, 678–682.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, L., Yang, C. Y., and Tan, W. H. (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5, 37–43.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, L., Zhao, W., and Tan, W. (2008) Bioconjugated silica nanoparticles: development and applications. Nano Res 1, 99–115.

    Article  CAS  Google Scholar 

  25. Santra, S., Wang, K. M., Tapec, R., and Tan, W. H. (2001) Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt 6, 160–166.

    Article  CAS  PubMed  Google Scholar 

  26. Jin, Y. H., Kannan, S., Wu, M., and Zhao, J. X. J. (2007) Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol 20, 1126–1133.

    Article  CAS  PubMed  Google Scholar 

  27. Xue, Z. G., Liang, D. S., Li, Y. M., Long, Z. G., Pan, D. A., Liu, X. H., Wu, L. Q., Zhu, S. H., Cai, F., Dai, H. P., Tang, B. S., Xia, K., and Xia, J. H. (2005) Silica nanoparticle is a possible safe carrier for gene therapy. Chin Sci Bull 50, 2323–2327.

    CAS  Google Scholar 

  28. Charreyre, M. T., Yekta, A., Winnik, M. A., Delair, T., and Pichot, C. (1995) Fluorescence energy-transfer from fluorescein to tetramethylrhodamine covalently bound to the surface of polystyrene latex-particles. Langmuir 11, 2423–2428.

    Article  CAS  Google Scholar 

  29. Charreyre, M. T., Zhang, P., Winnik, M. A., Pichot, C., and Graillat, C. (1995) Adsorption of rhodamine-60 onto polystyrene latex-particles with sulfate groups at the surface. J Colloid Interface Sci 170, 374–382.

    Article  CAS  Google Scholar 

  30. Gao, H. F., Zhao, Y. Q., Fu, S. K., Li, B., and Li, M. Q. (2002) Preparation of a novel polymeric fluorescent nanoparticle. Colloid Polym Sci 280, 653–660.

    Article  CAS  Google Scholar 

  31. Harma, H., Soukka, T., and Lovgren, T. (2001) Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem 47, 561–568.

    CAS  PubMed  Google Scholar 

  32. Makarova, O. V., Ostafin, A. E., Miyoshi, H., Norris, J. R., and Meisel, D. (1999) Adsorption and encapsulation of fluorescent probes in nanoparticles. J Phys Chem B 103, 9080–9084.

    Article  CAS  Google Scholar 

  33. Schlupen, J., Haegel, F. H., Kuhlmann, J., Geisler, H., and Schwuger, M. J. (1999) Sorption hysteresis of pyrene on zeolite. Colloids Surf A Physicochem Eng Asp 156, 335–347.

    Article  CAS  Google Scholar 

  34. Bagwe, R. P., Yang, C. Y., Hilliard, L. R., and Tan, W. H. (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20, 8336–8342.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, X. J., Bagwe, R. P., and Tan, W. H. (2004) Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv Mater 16, 173–176.

    Article  CAS  Google Scholar 

  36. Tapec, R., Zhao, X. J. J., and Tan, W. H. (2002) Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol 2, 405–409.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S. and Low, P. S. (1998) Folate-mediated targeting of antineoplastic drags, imaging agents, and nucleic acids to cancer cells. J Control Release 53, 39–48.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, X. J., Hilliard, L. R., Mechery, S. J., Wang, Y. P., Bagwe, R. P., Jin, S. G., and Tan, W. H. (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A 101, 15027–15032.

    Article  CAS  PubMed  Google Scholar 

  39. Ross, J. F., Chaudhuri, P. K., and Ratnam, M. (1994) Differential regulation of folate receptor isoforms in normal and malignant-tissues in-vivo and in established cell-lines – physiological and clinical implications. Cancer 73, 2432–2443.

    Article  CAS  PubMed  Google Scholar 

  40. Franklin, W. A., Waintrub, M., Edwards, D., Christensen, K., Prendegrast, P., Woods, J., Bunn, P. A., and Kolhouse, J. F. (1994) New anti-lung-cancer antibody cluster-12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer 89–95.

    Google Scholar 

  41. Lee, J. W., Lu, J. Y., Low, P. S., and Fuchs, P. L. (2002) Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics Bioorg Med Chem 10, 2397–2414.

    Article  CAS  PubMed  Google Scholar 

  42. Evans, C. O., Reddy, P., Brat, D. J., O'Neill, E. B., Craige, B., Stevens, V. L., and Oyesiku, N. M. (2003) Differential expression of folate receptor in pituitary adenomas. Cancer Res 63, 4218–4224.

    CAS  PubMed  Google Scholar 

  43. Ke, C. Y., Mathias, C. J., and Green, M. A. (2003) The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 30, 811–817.

    Article  CAS  PubMed  Google Scholar 

  44. Santra, S., Dutta, D., and Moudgil, B. M. (2005) Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics. Food Bioprod Process 83, 136–140.

    Article  CAS  Google Scholar 

  45. Santra, S., Yang, H., Dutta, D., Stanley, J. T., Holloway, P. H., Tan, W. H., Moudgil, B. M., and Mericle, R. A. (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun 2810–2811.

    Google Scholar 

  46. Ellington, A. D. and Szostak, J. W. (1990) Invitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the grants, NSF CBET-63016011, NSF-NIRT EEC-0506560, and NIH 2P01HL059412-11A1. The author acknowledges Professor Weihong Tan and his research group (Department of Chemistry, University of Florida) for their contribution in the area of fluorescent dye-loaded silica nanoparticle technology. The author also acknowledges the kind help of Christine Malgoza for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Santra, S. (2010). Fluorescent Silica Nanoparticles for Cancer Imaging. In: Grobmyer, S., Moudgil, B. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 624. Humana Press. https://doi.org/10.1007/978-1-60761-609-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-609-2_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-608-5

  • Online ISBN: 978-1-60761-609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics