Skip to main content

Design of Fluorescent Fusion Protein Probes

  • Protocol
  • First Online:
Live Cell Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 591))

Abstract

Many fluorescent probes depend on the fluorescence resonance energy transfer (FRET) between fluorescent protein pairs. The efficiency of energy transfer becomes altered by conformational changes of a fused sensory protein in response to a cellular event. A structure-based approach can be taken to design probes better with improved dynamic ranges by computationally modeling conformational changes and predicting FRET efficiency changes of candidate biosensor constructs. FRET biosensors consist of at least three domains fused together: the donor protein, the sensory domain, and the acceptor protein. To more efficiently subclone fusion proteins containing multiple domains, a cassette-based system can be used. Generating a cassette library of commonly used domains facilitates the rapid subcloning of future fusion biosensor proteins. FRET biosensors can then be used with fluorescence microscopy for real-time monitoring of cellular events within live cells by tracking changes in FRET efficiency. Stimulants can be used to trigger a range of cellular events including Ca2+ signaling, apoptosis, and subcellular translocations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Griesbeck, O. (2004) Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol. 14, 636–41.

    Article  CAS  PubMed  Google Scholar 

  2. Li, I. T., Pham, E., and Truong, K. (2006) Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics. Biotechnol Lett. 28, 1971–82.

    Article  CAS  PubMed  Google Scholar 

  3. Luo, K. Q., Yu, V. C., Pu, Y., and Chang, D. C. (2001) Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem Biophys Res Commun. 283, 1054–60.

    Article  CAS  PubMed  Google Scholar 

  4. Miyawaki, A. (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell. 4, 295–305.

    Article  CAS  PubMed  Google Scholar 

  5. Pozzan, T., Mongillo, M., and Rudolf, R. (2003) The Theodore Bucher lecture. Investigating signal transduction with genetically encoded fluorescent probes. Eur J Biochem. 270, 2343–52.

    Article  CAS  PubMed  Google Scholar 

  6. Truong, K., and Ikura, M. (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol. 11, 573–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kurokawa, K., Mochizuki, N., Ohba, Y., Mizuno, H., Miyawaki, A., and Matsuda, M. (2001) A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J Biol Chem. 276, 31305–10.

    Article  CAS  PubMed  Google Scholar 

  8. Clegg, R. M. (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol. 6, 103–10.

    Article  CAS  PubMed  Google Scholar 

  9. Tsien, R. Y. (1998) The green fluorescent protein. Annu Rev Biochem 67, 509–44.

    Article  CAS  PubMed  Google Scholar 

  10. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 1, 11–21.

    Article  CAS  PubMed  Google Scholar 

  11. Miyawaki, A., Griesbeck, O., Heim, R., and Tsien, R. Y. (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96, 2135–40.

    Article  CAS  PubMed  Google Scholar 

  12. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–7.

    Article  CAS  PubMed  Google Scholar 

  13. Pham, E., Chiang, J., Li, I., Shum, W., and Truong, K. (2007) A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space. Structure 15, 515–23.

    Article  CAS  PubMed  Google Scholar 

  14. Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C. B., and Bax, A. (1995) Solution structure of Ca2+-free calmodulin. Nat Struct Biol. 2, 768–76.

    Article  CAS  PubMed  Google Scholar 

  15. Wriggers, W., Mehler, E., Pitici, F., Weinstein, H., and Schulten, K. (1998) Structure and dynamics of calmodulin in solution. Biophys J. 74, 1622–39.

    Article  CAS  PubMed  Google Scholar 

  16. Li, I. T., Pham, E., Chiang, J. J., and Truong, K. (2008) FRET evidence that an isoform of caspase-7 binds but does not cleave its substrate. Biochem Biophys Res Commun. 373, 325–9.

    Article  CAS  PubMed  Google Scholar 

  17. Truong, K., Sawano, A., Mizuno, H., Hama, H., Tong, K. I., Mal, T. K., Miyawaki, A., and Ikura, M. (2001) FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol. 8, 1069–73.

    Article  CAS  PubMed  Google Scholar 

  18. Chiang, J. J., and Truong, K. (2006) Computational modeling of a new fluorescent biosensor for caspase proteolytic activity improves dynamic range. IEEE Trans Nanobiosci 5, 41–5.

    Article  Google Scholar 

  19. Xu, X., Gerard, A. L., Huang, B. C., Anderson, D. C., Payan, D. G., and Luo, Y. (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res. 26, 2034–5.

    Article  CAS  PubMed  Google Scholar 

  20. Winters, D. L., Autry, J. M., Svensson, B., and Thomas, D. D. (2008) Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Biochemistry 47, 4246–56.

    Article  CAS  PubMed  Google Scholar 

  21. Truong, K., Khorchid, A., and Ikura, M. (2003) A fluorescent cassette-based strategy for engineering multiple domain fusion proteins BMC Biotechnol. 3, 8.

    Article  PubMed  Google Scholar 

  22. Chiang, J. J., and Truong, K. (2005) Using co-cultures expressing fluorescence resonance energy transfer based protein biosensors to simultaneously image caspase-3 and Ca2+ signaling. Biotechnol Lett. 27, 1219–27.

    Article  CAS  PubMed  Google Scholar 

  23. Violin, J. D., Zhang, J., Tsien, R. Y., and Newton, A. C. (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C J Cell Biol. 161, 899–909.

    Article  CAS  PubMed  Google Scholar 

  24. Presley, J. F., Cole, N. B., Schroer, T. A., Hirschberg, K., Zaal, K. J., and Lippincott-Schwartz, J. (1997) ER-to-Golgi transport visualized in living cells. Nature 389, 81–5.

    Article  CAS  PubMed  Google Scholar 

  25. Dale, R. E., Eisinger, J., and Blumberg, W. E. (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J. 26, 161–93.

    Article  CAS  PubMed  Google Scholar 

  26. Hillel, Z., and Wu, C. W. (1976) Statistical interpretation of fluorescence energy transfer measurements in macromolecular systems. Biochemistry 15, 2105–13.

    Article  CAS  PubMed  Google Scholar 

  27. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 20, 87–90.

    Article  CAS  PubMed  Google Scholar 

  28. Rizzo, M. A., Springer, G. H., Granada, B., and Piston, D. W. (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol. 22, 445–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mank, M., Reiff, D. F., Heim, N., Friedrich, M. W., Borst, A., and Griesbeck, O. (2006) A FRET-based Ca2+ biosensor with fast signal kinetics and high fluorescence change. Biophys J. 90, 1790–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pham, E., Truong, K. (2010). Design of Fluorescent Fusion Protein Probes. In: Papkovsky, D. (eds) Live Cell Imaging. Methods in Molecular Biology, vol 591. Humana Press. https://doi.org/10.1007/978-1-60761-404-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-404-3_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-403-6

  • Online ISBN: 978-1-60761-404-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics