Skip to main content

Optical Biosensors Based on Photonic Crystal Surface Waves

  • Protocol
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 503))

Summary

Optical biosensors have played a key role in the selective recognition of target biomolecules and in biomolecular interaction analysis, providing kinetic data about biological binding events in real time without labeling. The advantages of the label-free concept are the elimination of detrimental effects from labels that may interfere with fundamental interaction and the absence of a time-consuming pretreatment. The disadvantages of all label-free techniques–including the most mature one, surface plasmon resonance (SPR) technique, are a deficient sensitivity to a specific signal and undesirable susceptibilities to non-specific signals, e.g., to the volume effect of refraction index variations. These variations arise from temperature fluctuations and drifts and they are the limiting factor for many state-of-the-art optical biosensors. Here we describe a new optical biosensor technique based on the registration of dual optical s-polarized waves on a photonic crystal surface. The simultaneous registration of two different optical modes from the same surface spot permits the segregation of the volume and the surface signals, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. The technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with a signal/noise ratio of about 15 at 1 s signal accumulation time. The detection limit is about 20 fg of the analyte on the probed spot of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robinson, G. (1995) The commercial development of planar optical biosensors. Sens. Actuators B 29, 31–36

    Article  Google Scholar 

  2. Cooper, M. A. (2003) Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 377, 834–842

    Article  CAS  PubMed  Google Scholar 

  3. Homola, J., Yee, S. S. and Gauglitz, G. (1999) Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3–15

    Article  Google Scholar 

  4. Raether, H. (1988) Surface Plasmons. Springer, Berlin

    Google Scholar 

  5. Cush, R., Cronin, J., Stewart, W., Maule, C., Molloy, J. and Goddard, N. (1993) The resonant mirror–a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation. Biosens. Bioelectron. 8, 347–353

    Article  CAS  Google Scholar 

  6. Alieva, E. V. and Konopsky, V. N. (2004) Biosensor based on surface plasmon interfer-ometry independent on variations of liquid's refraction index. Sens. Actuators B 99, 90–97

    Article  Google Scholar 

  7. Slavík, R., Homola, J. and Vaisocherová, H. (2006) Advanced biosensing using simultaneous excitation of short and long range surface plasmons. Meas. Sci. Technol. 17, 932–938

    Article  Google Scholar 

  8. Cross, G., Reeves, A., Brand, S., Swann, M., Peel, L., Freeman, N. and Lu, J. (2004) The metrics of surface adsorbed small molecules on the Young's fringe dual-slab waveguide interferometer. J. Phys. D Appl. Phys. 37, 74–80

    Article  CAS  Google Scholar 

  9. Yablonovitch, E. (1993) Photonic band-gap structures. J. Opt. Soc. Am. B 10, 283–295

    Article  CAS  Google Scholar 

  10. Kossel, D. (1966) Analogies between thin-film optics and electron band theory of solids. J. Opt. Soc. Am. 56, 1434–1434

    Google Scholar 

  11. Yeh, P., Yariv, A. and Hong, C.-S. (1977) Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67, 423–438

    Article  Google Scholar 

  12. Yeh, P. , Yariv, A. and Cho, A. Y. (1978) Optical surface waves in periodic layered media. Appl. Phys. Lett. 32, 104–105

    Article  CAS  Google Scholar 

  13. Robertson, W. M. and May, M. S. (1999) Surface electromagnetic waves on one-dimensional photonic band gap arrays. Appl. Phys. Lett. 74, 1800–1802

    Article  CAS  Google Scholar 

  14. Villa, F., Regalado, L., Ramos-Mendieta, F., Gaspar-Armenta, J. and Lopez-Rios, T. (2002) Photonic crystal sensor based on surface waves for thin-film characterization. Opt. Lett. 27, 646–648

    Article  CAS  PubMed  Google Scholar 

  15. Li, J., Wang, H., Zhao, Y., Cheng, L., He, N. and Lu, Z. (2001) Assembly method fabricating linkers for covalently bonding DNA on glass surface. Sensors 1, 53–59

    Article  CAS  Google Scholar 

  16. Palik, E. D. (1985) Handbook of Optical Constants of Solids. Academic, London

    Google Scholar 

  17. http://www.laser-export.com

  18. http://www.ofr.com

  19. http://www.hamamatsu.com

  20. Konopsky, V. N. and Alieva, E. V. (2006) Long-range propagation of plasmon polari-tons in a thin metal film on a one-dimensional photonic crystal surface. Phys. Rev. Lett. 97, 253904

    Article  PubMed  Google Scholar 

  21. http://www.cdpsystems.com

  22. Elimelech, M. (1994) Particle deposition on ideal collectors from dilute flowing suspensions: Mathematical formulation, numerical solution, and simulations. Sep. Technol. 4, 186–212

    Article  CAS  Google Scholar 

  23. Myszka, D. G., He, X., Dembo, M., Morton, T. A. and Goldstein, B. (1998) Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data. ,Biophys. J. 75, 583–594

    Article  CAS  PubMed  Google Scholar 

  24. Hyre, D. E., Trong, I. L., Merritt, E. A., Eccleston, J. F., Green, N. M., Stenkamp, R. E. and Stayton, P. S. (2006) Cooperative hydrogen bond interactions in the streptavidinbiotin system. Protein Sci. 15, 459–467

    Article  CAS  PubMed  Google Scholar 

  25. Freitag, S., Trong, I. L., Klumb, L., Stayton, P. S. and Stenkamp, R. E. (1997) Structural studies of the streptavidin binding loop. Protein Sci. 6, 1157–1166

    Article  CAS  PubMed  Google Scholar 

  26. Zybin, A., Grunwald, C., Mirsky, V. M., Kuhlmann, J., Wolfbeis, O. S. and Niemax, K. (2005) Double-wavelength technique for surface plasmon resonance measurements: Basic concept and applications for single sensors and two-dimensional sensor arrays. Anal. Chem. 77, 2393–2399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank S. Grachev for the kind donation of some biochemicals and for helpful advice about surface preparation. This work was partly supported by the European Network of Excellence, NMP3-CT- 2005-515703-2.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Konopsky, V.N., Alieva, E.V. (2009). Optical Biosensors Based on Photonic Crystal Surface Waves. In: Rasooly, A., Herold, K.E. (eds) Biosensors and Biodetection. Methods in Molecular Biology™, vol 503. Humana Press. https://doi.org/10.1007/978-1-60327-567-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-567-5_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-566-8

  • Online ISBN: 978-1-60327-567-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics