Skip to main content

In Silico Gene Discovery

  • Protocol
Clinical Bioinformatics

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 141))

Summary

Complex diseases can involve the interaction of multiple genes and environmental factors. Discovering these genes is difficult, and in silico based strategies can significantly improve their detection. Data mining and automated tracking of new knowledge facilitate locus mapping. At the gene search stage, in silico prioritization of candidate genes plays an indispensable role in dealing with linked or associated loci. In silico analysis can also differentiate subtle consequences of coding DNA variants and remains the major method to predict functionality for non-coding DNA variants, particularly those in promoter regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

cM:

centimorgan

EST:

expressed sequence tag

LD:

linkage disequilibrium

OMIM:

Online Mendelian Inheritance in Man

SNP:

single nucleotide polymorphism

References

  1. Grant, S. F., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Manolescu, A., Sainz, J., et al. (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323.

    Article  CAS  PubMed  Google Scholar 

  2. Herbert, A., Gerry, N. P., McQueen, M. B., Heid, I. M., Pfeufer, A., Illig, T., et al. (2006) A common genetic variant is associated with adult and childhood obesity. Science 312, 279–283.

    Article  CAS  PubMed  Google Scholar 

  3. Watkins, H., and Farrall, M. (2006) Genetic susceptibility to coronary artery disease: from promise to progress. Nat. Rev. Genet. 7, 163–173.

    Article  CAS  PubMed  Google Scholar 

  4. Thomson, G. (2001) Significance levels in genome scans. Adv. Genet. 42, 475–486.

    Article  CAS  PubMed  Google Scholar 

  5. Trent, R. J. (2005) Molecular Medicine. Elsevier Academic Press, San Francisco.

    Google Scholar 

  6. Gauderman, W. J. (2002) Sample size requirements for matched case-control studies of gene–environment interaction. Stat. Med. 21, 35–50.

    Article  PubMed  Google Scholar 

  7. Laird, N. M., and Lange, C. (2006) Family-based designs in the age of large-scale gene-association studies. Nat. Rev. Genet. 7, 385–394.

    Article  CAS  PubMed  Google Scholar 

  8. Lalouel, J. M., and Rohrwasser A. (2002) Power and replication in case-control studies. Am. J. Hypertens. 15, 201–205.

    Article  PubMed  Google Scholar 

  9. Ambrosius, W. T., Lange, E. M., and Langefeld, C. D. (2004) Power for genetic association studies with random allele frequencies and genotype distributions. Am. J. Hum. Genet. 74, 683–693.

    Article  CAS  PubMed  Google Scholar 

  10. Kruglyak, L. (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22, 139–144.

    Article  CAS  PubMed  Google Scholar 

  11. de Bakker, P. I., Yelensky, R., Pe’er, I., Gabriel, S. B., Daly, M. J., and Altshuler, D. (2005) Efficiency and power in genetic association studies. Nat. Genet. 37, 1217–1223.

    Article  PubMed  Google Scholar 

  12. Batzoglou, S. (2005) The many faces of sequence alignment. Brief Bioinform. 6, 6–22.

    Article  CAS  PubMed  Google Scholar 

  13. Weeber, M., Kors, J. A., and Mons, B. (2005) Online tools to support literature-based discovery in the life sciences. Brief Bioinform. 6, 277–286.

    Article  PubMed  Google Scholar 

  14. van Driel, M. A., Cuelenaere, K., Kemmeren, P. P., Leunissen, J. A., Brunner, H. G., and Vriend, G. (2005) GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res. 33, W758–W761.

    Article  PubMed  Google Scholar 

  15. Freudenberg, J., and Propping, P. (2002) A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics 18, S110–S115.

    PubMed  Google Scholar 

  16. Perez-Iratxeta, C., Bork, P., and Andrade, M. A. (2002) Association of genes to genetically inherited diseases using data mining. Nat. Genet. 31, 316–319.

    CAS  PubMed  Google Scholar 

  17. Turner, F. S., Clutterbuck, D. R., and Semple, C. A. M. (2003) POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol. 4, R75.

    Article  PubMed  Google Scholar 

  18. Adie, E. A., Adams, R. R., Evans, K. L., Porteous, D. J., and Pickard, B. S. (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 6, 55.

    Google Scholar 

  19. Devos, D., and Valencia, A. (2001) Intrinsic errors in genome annotation. Trends Genet. 17, 429–431.

    Article  CAS  PubMed  Google Scholar 

  20. Judson, R., Stephens, J. C., and Windemuth, A. (2000) The predictive power of haplotypes in clinical response. Pharmacogenomics 1, 15–26.

    Article  CAS  PubMed  Google Scholar 

  21. Adkins, R. M. (2004) Comparison of the accuracy of methods of computational haplotype inference using a large empirical dataset. BMC Genet. 5, 22.

    Article  PubMed  Google Scholar 

  22. Van Den Bogaert, A., Schumacher, J., Schulze, T. G., Otte, A. C., Ohlraun, S., Kovalenko, S., et al. (2003) The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am. J. Hum. Genet. 73, 1438–1443.

    Article  Google Scholar 

  23. Yu, B. (2004) What is the value of mutation identification in familial hypertrophic cardiomyopathy? IUBMB Life 56, 281–283.

    Article  CAS  PubMed  Google Scholar 

  24. Mooney, S. (2005) Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Brief Bioinform. 6, 44–56.

    Article  CAS  PubMed  Google Scholar 

  25. Ng, P. C., and Henikoff, S. (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814.

    Article  CAS  PubMed  Google Scholar 

  26. Cartegni, L., and Krainer, A. R. (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384.

    Article  CAS  PubMed  Google Scholar 

  27. Kashima, T., and Manley, J. L. (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34, 460–463.

    Article  CAS  PubMed  Google Scholar 

  28. Fairbrother, W. G., Yeh, R. F., Sharp, P. A., and Burge, C. B. (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  29. Amador, M. L., Oppenheimer, D., Perea, S., Maitra, A., Cusat, I. G., Iacobuzio-Donahue, C., et al. (2004) An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res. 64, 9139–9143.

    Article  CAS  PubMed  Google Scholar 

  30. Tokuhiro, S., Yamada, R., Chang, X., Suzuk, I. A., Kochi, Y., Sawada, T., et al. (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35, 341–348.

    Article  CAS  PubMed  Google Scholar 

  31. Bulyk, M. L. (2003) Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201.

    Article  PubMed  Google Scholar 

  32. Pavesi, G., Mauri, G., and Pesole, G. (2004) In silico representation and discovery of transcription factor binding sites. Brief Bioinform. 5, 217–236.

    Article  CAS  PubMed  Google Scholar 

  33. Gayagay, G., Yu, B., Hambly, B., Boston, T., Hahn, A., Celermajer, D. S., et al. (1998) Elite endurance athletes and the ACE I allele—the role of genes in athletic performance. Hum. Genet. 103, 48–50.

    Article  CAS  PubMed  Google Scholar 

  34. Henderson, J., Withford-Cave, J. M., Duffy, D. L., Cole, S. J., Sawyer, N. A., Gulbin, J. P., et al. (2005) The EPAS1 gene influences the aerobic–anaerobic contribution in elite endurance athletes. Hum. Genet. 118, 416–423.

    Article  CAS  PubMed  Google Scholar 

  35. Bouchard, C., Rankinen, T., Chagnon, Y. C., Rice, T., Perusse, L., Gagnon, J., et al. (2000) Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study. J. Appl. Physiol. 88, 551–559.

    CAS  PubMed  Google Scholar 

  36. Miller, R. T., Christoffels, A. G., Gopalakrishnan, C., Burke, J., Ptitsyn, A. A., Broveak, T. R., et al. (1999) A comprehensive approach to clustering of expressed human gene sequence: the sequence tag alignment and consensus knowledge base. Genome Res. 9, 1143–1155.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yu, B. (2008). In Silico Gene Discovery. In: Trent, R.J. (eds) Clinical Bioinformatics. Methods in Molecular Medicine™, vol 141. Humana Press. https://doi.org/10.1007/978-1-60327-148-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-148-6_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-791-4

  • Online ISBN: 978-1-60327-148-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics