Skip to main content

Retroposons: Genetic Footprints on the Evolutionary Paths of Life

  • Protocol
Phylogenomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 422))

Abstract

Retroposons such as short interspersed elements (SINEs) and long interspersed elements are abundant transposable elements in eukaryote genomes. Recent large-scale comparative genome analyses have revealed that retroposons are a major component of genomes, wherein they provide structural diversity between species and uniqueness to each species. SINEs have been used as powerful markers in phylogenetic analyses of various species. This approach, which has been termed the SINE insertion method, infers phylogenetic relationships based on the presence/absence of SINEs among lineages. However, the method is not yet used extensively among biologists, especially molecular phylogenetists, because it is based on an understanding of the molecular mechanisms of retroposition, which may be unfamiliar to many researchers. Moreover, the method may require a large amount of bench work to characterize a new SINE family and to screen genomic libraries of the species of interest. In this chapter, we present the basic theory and detailed technical steps involved in a SINE insertion analysis. Furthermore, we explain the isolation and characterization of a new SINE family from the genome of a species of interest using as an example a known SINE family in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Okada, N. (1991) SINEs. Curr. Opin. Genet. Dev. 1, 498–504.

    Article  CAS  PubMed  Google Scholar 

  2. Okada, N. (1991) SINEs: short interspersed repeated elements of the eukaryotic genome. Trends Ecol. Evol. 6, 358–361.

    Article  CAS  PubMed  Google Scholar 

  3. Hutchison, C. A., Hardies, S. C., Loeb, D. D., Shehee, W. R., and Edgell, M. H. (1989) LINES and related retroposons: Long interspersed sequences in the eucaryotic genome. In: Mobile DNA (Berg, D. E. and Howe, M. M. eds), pp. 593–617, ASM, Washington, DC.

    Google Scholar 

  4. Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  CAS  PubMed  Google Scholar 

  5. Waterston, R. H., Lindblad-Toh, K., Birney, E., et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.

    Article  CAS  PubMed  Google Scholar 

  6. Ohshima, K. and Okada, N. (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet. Genome Res. 110, 475–490.

    Article  CAS  PubMed  Google Scholar 

  7. Kramerov, D. A. and Vassetzky, N. S. (2005) Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247, 165–221.

    Article  CAS  PubMed  Google Scholar 

  8. Rogers, J. H. (1985) The origin and evolution of retroposons. Int. Rev. Cytol. 93, 187–279.

    Article  CAS  PubMed  Google Scholar 

  9. Weiner, A. M., Deininger, P. L., and Efstratiadis, A. (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661.

    Article  CAS  PubMed  Google Scholar 

  10. Rokas, A. and Holland, P. W. (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459.

    Article  PubMed  Google Scholar 

  11. Shedlock, A. M. and Okada, N. (2000) SINE insertions: powerful tools for molecular systematics. Bioessays 22, 148–160.

    Article  CAS  PubMed  Google Scholar 

  12. Robertson, H. M. (2002) Evolution of DNA transposons in eukaryotes. In: Mobile DNA II (Craig, N. L., Graigie, R., Gellert, M., and Lambowitz, A. M. eds), pp. 1093–1110, ASM, Washington, DC.

    Google Scholar 

  13. Kajikawa, M. and Okada, N. (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111, 433–444.

    Article  CAS  PubMed  Google Scholar 

  14. Dewannieux, M., Esnault, C., and Heidmann, T. (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48.

    Article  CAS  PubMed  Google Scholar 

  15. Ohshima, K., Hamada, M., Terai, Y., and Okada, N. (1996) The 3′ ends of tRNAderived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements. Mol. Cell. Biol. 16, 3756–3764.

    CAS  PubMed  Google Scholar 

  16. Okada, N., Hamada, M., Ogiwara, I., and Ohshima, K. (1997) SINEs and LINEs share common 3′ sequences: a review. Gene 205, 229–243.

    Article  CAS  PubMed  Google Scholar 

  17. Ullu, E. and Tschudi, C. (1984) Alu sequences are processed 7SL RNA genes. Nature 312, 171–172.

    Article  CAS  PubMed  Google Scholar 

  18. Nishihara, H., Terai, Y., and Okada, N. (2002) Characterization of novel Alu-and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol. Biol. Evol. 19, 1964–1972.

    CAS  PubMed  Google Scholar 

  19. Kapitonov, V. V. and Jurka, J. (2003) A novel class of SINE elements derived from 5S rRNA. Mol. Biol. Evol. 20, 694–702.

    Article  CAS  PubMed  Google Scholar 

  20. Nishihara, H., Smit, A. F., and Okada, N. (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16, 864–874.

    Article  CAS  PubMed  Google Scholar 

  21. Nikaido, M., Nishihara, H., Fukumoto, Y., and Okada, N. (2003) Ancient SINEs from African endemic mammals. Mol. Biol. Evol. 20, 522–527.

    Article  CAS  PubMed  Google Scholar 

  22. Nikaido, M., Matsuno, F., Abe, H., et al. (2001) Evolution of CHR-2 SINEs in cetartiodactyl genomes: possible evidence for the monophyletic origin of toothed whales. Mamm. Genome 12, 909–915.

    Article  CAS  PubMed  Google Scholar 

  23. Shimamura, M., Yasue, H., Ohshima, K., et al. (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388, 666–670.

    Article  CAS  PubMed  Google Scholar 

  24. Nikaido, M., Rooney, A. P., and Okada, N. (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc. Natl Acad. Sci. USA 96, 10,261–10,266.

    Article  CAS  PubMed  Google Scholar 

  25. Nikaido, M., Matsuno, F., Hamilton, H., et al. (2001) Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proc. Natl Acad. Sci. USA 98, 7384–7389.

    Article  CAS  PubMed  Google Scholar 

  26. Nikaido, M., Hamilton, H., Makino, H., et al. (2006) Baleen whale phylogeny and a past extensive radiation event revealed by SINE insertion analysis. Mol. Biol. Evol. 23, 866–873.

    Article  CAS  PubMed  Google Scholar 

  27. Schmitz, J., Ohme, M., and Zischler, H. (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157, 777–784.

    CAS  PubMed  Google Scholar 

  28. Salem, A. H., Ray, D. A., Xing, J., et al. (2003) Alu elements and hominid phylogenetics. Proc. Natl Acad. Sci. USA 100, 12,787–12,791.

    Article  PubMed  Google Scholar 

  29. Roos, C., Schmitz, J., and Zischler, H. (2004) Primate jumping genes elucidate strepsirrhine phylogeny. Proc. Natl Acad. Sci. USA 101, 10,650–10,654.

    Article  CAS  PubMed  Google Scholar 

  30. Nishihara, H., Satta, Y., Nikaido, M., Thewissen, J. G., Stanhope, M. J., and Okada, N. (2005) A retroposon analysis of Afrotherian phylogeny. Mol. Biol. Evol. 22, 1823–1833.

    Article  CAS  PubMed  Google Scholar 

  31. Kriegs, J. O., Churakov, G., Kiefmann, M., Jordan, U., Brosius, J., and Schmitz, J. (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol. 4, e91.

    Article  PubMed  Google Scholar 

  32. Nishihara, H., Hasegawa, M., and Okada, N. (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc. Natl Acad. Sci. USA 103, 9929–9934.

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe, M., Nikaido, M., Tsuda, T. T., et al. (2006) The rise and fall of the CR1 subfamily in the lineage leading to penguins. Gene 365, 57–66.

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, T., Takahashi, K., Nikaido, M., Miura, S., Yasukawa, Y., and Okada, N. (2004) First application of the SINE (short interspersed repetitive element) method to infer phylogenetic relationships in reptiles: an example from the turtle superfamily Testudinoidea. Mol. Biol. Evol. 21, 705–715.

    Article  CAS  PubMed  Google Scholar 

  35. Piskurek, O., Austin, C. C., and Okada, N. (2006) Sauria SINEs: novel short interspersed retroposable elements that are widespread in reptile genomes. J. Mol. Evol. 62, 630–644.

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki, T., Yasukawa, Y., Takahashi, K., Miura, S., Shedlock, A. M., and Okada, N. (2006) Extensive morphological convergence and rapid radiation in the evolutionary history of the family Geoemydidae (Old World pond turtles) revealed by SINE insertion analysis. Syst. Biol. in press.

    Google Scholar 

  37. Murata, S., Takasaki, N., Saitoh, M., and Okada, N. (1993) Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proc. Natl Acad. Sci. USA 90, 6995–6999.

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi, K., Terai, Y., Nishida, M., and Okada, N. (1998) A novel family of short interspersed repetitive elements (SINEs) from cichlids: the patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika. Mol. Biol. Evol. 15, 391–407.

    CAS  PubMed  Google Scholar 

  39. Takahashi, K., Terai, Y., Nishida, M., and Okada, N. (2001) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol. Biol. Evol. 18, 2057–2066.

    CAS  PubMed  Google Scholar 

  40. Schmid, C. and Maraia, R. (1992) Transcriptional regulation and transpositional selection of active SINE sequences. Curr. Opin. Genet. Dev. 2, 874–882.

    Article  CAS  PubMed  Google Scholar 

  41. Springer, M. S., Murphy, W. J., Eizirik, E., and O’Brien, S. J. (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc. Natl Acad. Sci. USA 100, 1056–1061.

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz, S., Kent, W. J., Smit, A., et al. (2003) Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107.

    Article  CAS  PubMed  Google Scholar 

  43. Blanchette, M., Kent, W. J., Riemer, C., et al. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar, S., Tamura, K., and Nei, M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150–163.

    Article  CAS  PubMed  Google Scholar 

  45. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  46. Endoh, H. and Okada, N. (1986) Total DNA transcription in vitro: a procedure to detect highly repetitive and transcribable sequences with tRNA-like structures. Proc. Natl Acad. Sci. USA 83, 251–255.

    Article  CAS  PubMed  Google Scholar 

  47. Okada, N., Shedlock, A. M., and Nikaido, M. (2004) Retroposon mapping in molecular systematics. Methods Mol. Biol. 260, 189–226.

    CAS  PubMed  Google Scholar 

  48. Borodulina, O. R. and Kramerov, D. A. (1999) Wide distribution of short interspersed elements among eukaryotic genomes. FEBS Lett. 457, 409–413.

    Article  CAS  PubMed  Google Scholar 

  49. Gauss, D. H., Gruter, F., and Sprinzl, M. (1979) Compilation of tRNA sequences. Nucleic Acids Res. 6, r1–r19.

    Article  CAS  PubMed  Google Scholar 

  50. Deininger, P. L., Moran, J. V., Batzer, M. A., and Kazazian, H. H. Jr. (2003) Mobile elements and mammalian genome evolution. Curr. Opin. Genet. Dev. 13, 651–658.

    Article  CAS  PubMed  Google Scholar 

  51. Nikaido, M., Piskurek, O., and Okada, N. (2006) Toothed whale monophyly reassessed by SINE insertion analysis: the absence of lineage sorting effects suggests a small population of a common ancestral species. Mol. Phylogenet. Evol. in press.

    Google Scholar 

  52. Karolchik, D., Baertsch, R., Diekhans, M., et al. (2003) The UCSC genome browser database. Nucleic Acids Res. 31, 51–54.

    Article  CAS  PubMed  Google Scholar 

  53. Churakov, G., Smit, A. F., Brosius, J., and Schmitz, J. (2005) A novel abundant family of retroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus). Mol. Biol. Evol. 22, 886–893.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nishihara, H., Okada, N. (2008). Retroposons: Genetic Footprints on the Evolutionary Paths of Life. In: Murphy, W.J. (eds) Phylogenomics. Methods in Molecular Biology™, vol 422. Humana Press. https://doi.org/10.1007/978-1-59745-581-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-581-7_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-764-8

  • Online ISBN: 978-1-59745-581-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics