Skip to main content

Wide-Field and Two-Photon Imaging of Brain Activity with Voltage and Calcium-Sensitive Dyes

  • Protocol
Dynamic Brain Imaging

Abstract

This chapter presents three examples of imaging brain activity with voltage- or calcium-sensitive dyes. Because experimental measurements are limited by low sensitivity, the chapter then discusses the methodological aspects that are critical for optimal signal-to-noise ratio. Two of the examples use wide-field (1-photon) imaging and the third uses two-photon scanning microscopy. These methods have relatively high temporal resolution ranging from 10 to 10,000 Hz.

The three examples are the following: (1) Internally injected voltage-sensitive dye can be used to monitor membrane potential in the dendrites of invertebrate and vertebrate neurons in in vitro preparations. These experiments are directed at understanding how individual neurons convert the complex input synaptic activity into the output spike train. (2) Recently developed methods for staining many individual cells in the mammalian brain with calcium-sensitive dyes together with two-photon microscopy made it possible to follow the spike activity of many neurons simultaneously while in vivo preparations are responding to stimulation. (3) Calcium-sensitive dyes that are internalized into olfactory receptor neurons in the nose will, after several days, be transported to the nerve terminals of these cells in the olfactory bulb glomeruli. There, the population signals can be used as a measure of the input from the nose to the bulb.

Three kinds of noise in measuring light intensity are discussed: (1) Shot noise from the random emission of photons from the preparation. (2) Extraneous (technical) noise from external sources. (3) Noise that occurs in the absence of light, the dark noise. In addition, we briefly discuss the light sources, the optics, and the detectors and cameras.

The commonly used organic voltage and ion sensitive dyes stain all of the cell types in the preparation indiscriminately. A major effort is underway to find methods for staining individual cell types in the brain selectively. Most of these efforts center around fluorescent protein activity sensors because transgenic methods can be used to express them in individual cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen L.B., Salzberg B.M. (1978). Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol, 83, 35–88.

    CAS  PubMed  Google Scholar 

  2. Loew L.M., Cohen L.B., Salzberg B.M., Obaid A.L., Bezanilla F. (1985). Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J, 47, 71–77.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta R.K., Salzberg B.M., Grinvald A., Cohen L.B., Kamino K., Lesher S., Boyle M.B., Waggoner A.S., Wang C.H. (1981). Improvements in optical methods for measuring rapid changes in membrane potential. J. Membr. Biol., 58, 123–137.

    Article  CAS  PubMed  Google Scholar 

  4. Waggoner A.S., Grinvald A. (1977). Mechanisms of rapid optical changes of potential sensitive dyes. Annu NY Acad Sci, 303, 217–241.

    CAS  Google Scholar 

  5. Fromherz P., Dambacher K.H., Ephardt H., Lambacher A., Muller C.O., Neigl R., Schaden H., Schenk O., Vetter T. (1991). Fluorescent dyes as probes of voltage transients in neuron membranes: Progress report. Ber. Bunsenges. Phys. Chem., 95, 1333–1345.

    CAS  Google Scholar 

  6. Cohen L.B., Lesher, S. (1986). Optical monitoring of membrane potential: methods of multisite optical measurement. Soc Gen Physiol Ser, 40, 71–99.

    CAS  PubMed  Google Scholar 

  7. Grinvald A., Frostig R.D., Lieke E., Hildesheim R. (1988) Optical imaging of neuronal activity. Physiological Reviews. 68: 1285–1366.

    CAS  PubMed  Google Scholar 

  8. Nakashima M., Yamada S., Shiono S., Maeda M., Satoh F. (1992) 448-detector Optical Recording System: Development and application to Aplysia gill-withdrawal reflex. IEEE Trans Biomed Eng. 39: 26–36.

    Article  CAS  PubMed  Google Scholar 

  9. Momose-Sato Y., Sato K., Sakai T., Hirota A., Matsutani K., Kamino, K. (1995). Evaluation of optimal voltage-sensitive dyes for optical measurement of embryonic neural activity. J Memb. Biology, 144, 167–176.

    CAS  Google Scholar 

  10. Zecevic D. (1996). Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature. 381: 322–325.

    Article  CAS  PubMed  Google Scholar 

  11. Palmer L.M., Stuart G.J. (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci. 2006 Feb 8;26(6):1854–63.

    Google Scholar 

  12. Canepari M., Djurisic M., Zecevic D. (2007) Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study. J Physiol. 580:463–484.

    Article  CAS  PubMed  Google Scholar 

  13. Neher E., Augustine G.J. (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol. 450:273–301.

    CAS  PubMed  Google Scholar 

  14. Helmchen F., Imoto K., Sakmann, B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70:1069–1081.

    Article  CAS  PubMed  Google Scholar 

  15. Stuart G.J., Sakmann B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72.

    Article  CAS  PubMed  Google Scholar 

  16. Spruston N., Schiller Y., Stuart G., Sakmann B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300.

    Article  CAS  PubMed  Google Scholar 

  17. Magee J.C., Johnston D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science, 268, 301–304.

    Article  CAS  PubMed  Google Scholar 

  18. Magee J.C., Christofi G., Miyakawa H., Christie B., Lasser-Ross N., Johnston D. (1995). Subthreshold synaptic activation of voltage-gated calcium channels mediate a localized calcium influx into dendrites of hippocampal pyramidal neurons. J. Neurophysiol., 74, 335–324.

    Google Scholar 

  19. Stuart G.J., Hausser M. (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4:63–71.

    Article  CAS  PubMed  Google Scholar 

  20. Berger T., Larkum M.E., Luscher H.R. (2001) High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J Neurophysiol 85: 855–868.

    CAS  PubMed  Google Scholar 

  21. Antic S., Major G., Zecevic D. (1999) Fast optical recording of membrane potential changes from dendrites of pyramidal neurons. J. Neurophysiol., 82, 1615–1621.

    CAS  PubMed  Google Scholar 

  22. Antic S., Wuskell J.P., Loew L., Zecevic D. (2000). Functional profile of the giant metacerebral neuron of Helix aspersa: Temporal and spatial dynamics of electrical activity in situ. J Physiol (Lond) 527,55–69.

    Article  CAS  Google Scholar 

  23. Antic S. (2003). Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550, 35–50.

    Article  CAS  PubMed  Google Scholar 

  24. Djurisic M., Antic S., Chen, W-r., Zecevic D. (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J. Neuroscience. 24, 6703–6714.

    Article  CAS  Google Scholar 

  25. Antic S., Zecevic D. (1995). Optical signals from neurons with internally applied voltage- sensitive dyes. J Neuroscience, 15, 1392–1405.

    CAS  Google Scholar 

  26. Grinvald A., Hildesheim R., Farber I.C., Anglister L. (1982). Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J, 39, 301–308.

    Article  CAS  PubMed  Google Scholar 

  27. Ross W.N., Krauthamer V. (1984) Optical measurements of potential changes in axons and processes of neurons of a barnacle ganglion. J Neurosci 4: 659-672.

    CAS  PubMed  Google Scholar 

  28. Grinvald A., Salzberg B. M., Lev-Ram V., Hildesheim R. (1987). Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys J. 51, 643–651.

    Article  CAS  PubMed  Google Scholar 

  29. Zecevic D., Antic S. (1998) Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell. Histochem J., 30:197–216.

    Article  CAS  PubMed  Google Scholar 

  30. Bischofberger J., Jonas P. (1997) Action potential propagation into the presynaptic dendrites of rat mitral cells. J Physiol (Lond) 504: 359–65.

    Article  CAS  Google Scholar 

  31. Chen W.R., Midtgaard J., Shepherd G.M. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278, 463–467.

    Article  CAS  PubMed  Google Scholar 

  32. Christie J.M., Westbrook G.L. (2003) Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents. J Neurophysiol 89: 2466–2472.

    Article  CAS  PubMed  Google Scholar 

  33. Davila H.V., Salzberg B.M., Cohen L.B., Waggoner A.S. (1973). A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nature, New Biol., 241, 159–160.

    CAS  Google Scholar 

  34. Tsien R.W., Tsien R.Y. (1990). “Calcium channels, stores, and oscillations”. Annu. Rev. Cell Biol. 6: 715–760.

    Article  CAS  PubMed  Google Scholar 

  35. Berridge M.J., Lipp P., Bootman M.D. (2000). “The versatility and universality of calcium signaling”. Nat. Rev. Mol. Cell. Biol. 1: 11–21.

    Article  CAS  PubMed  Google Scholar 

  36. Verkhratsky A. (2005). “Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons”. Physiol. Rev. 85: 201–279.

    Article  CAS  PubMed  Google Scholar 

  37. Tsien R.Y. (1981). “A non-disruptive technique for loading calcium buffers and indicators into cells”. Nature 290: 527–528.

    Article  CAS  PubMed  Google Scholar 

  38. Stosiek C., Garaschuk O., Holthoff K., Konnerth A. (2003) In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. U S A. 100:7319–7324.

    Article  CAS  PubMed  Google Scholar 

  39. Brustein E., Marandi N., Kovalchuk Y., Drapeau P., Konnerth A. (2003). “‘In vivo’ monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging”. Pflugers Arch. 446: 766–773.

    Article  CAS  PubMed  Google Scholar 

  40. Nimmerjahn A., Kirchhoff F., Kerr J.N.D., Helmchen F. (2004). “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo”. Nature Methods 1: 31–37.

    Article  CAS  PubMed  Google Scholar 

  41. Kerr J.N., Greenberg D., Helmchen F. (2005). “Imaging input and output of neocortical networks in vivo”. Proc. Natl. Acad. Sci. U S A 102: 14063–14068.

    Article  CAS  PubMed  Google Scholar 

  42. Li J., Mack J.A., Souren M., Yaksi E., Higashijima S., Mione M., Fetcho J.R., Friedrich R.W. (2005). “Early development of functional spatial maps in the zebrafish olfactory bulb”. J. Neurosci. 25: 5784–5795.

    Article  CAS  PubMed  Google Scholar 

  43. Niell C.M., S.J. Smith (2005). “Functional imaging reveals rapid development of visual response properties in the zebrafish tectum”. Neuron 45: 941–951.

    Article  CAS  PubMed  Google Scholar 

  44. Ohki K., Chung S., Ch’ng Y.H., Kara P., Reid R.C. (2005). “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex”. Nature 433: 597–603.

    Article  CAS  PubMed  Google Scholar 

  45. Sullivan M.R., Nimmerjahn A., Sarkisov D.V., Helmchen F., Wang S.S. (2005). “In vivo calcium imaging of circuit activity in cerebellar cortex”. J. Neurophysiol. 94: 1636–1644.

    Article  CAS  PubMed  Google Scholar 

  46. Garaschuk O., Milos R.I., Grienberger C., Marandi N., Adelsberger H., Konnerth A. (2006). “Optical monitoring of brain function in vivo: From neurons to networks”. Pflugers Arch. 453: 385–396.

    Article  CAS  PubMed  Google Scholar 

  47. Xu F., Kida I., Hyder F., Shulman R. (2000) Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI. Proc Natl Acad Sci USA 97:10601–10606.

    Article  CAS  PubMed  Google Scholar 

  48. Woo C.C., Hingco E.E., Johnson B.A., Leon M. (2007) Broad activation of the glomerular layer enhances subsequent olfactory responses. Chemical Senses, 32: 51–55.

    Article  CAS  PubMed  Google Scholar 

  49. Rubin B., Katz L. (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499–511.

    Article  CAS  PubMed  Google Scholar 

  50. O’Donovan M.J., Sholomenko S.Ho.G., Yee W. (1993). Real-time imaging of neurons retrogradely and anterogradely labeled with calcium-sensitive dyes. J. Neuroscience Methods, 46, 91–106.

    Google Scholar 

  51. Tsau Y., Wenner P., O’Donovan M.J., Cohen L.B., Loew L.M., Wuskell, J.P.. (1996). Dye screening and signal-to-noise ratio for retrogradely transported voltage-sensitive dyes. J. Neuroscience Methods, 70, 121–129.

    Article  CAS  Google Scholar 

  52. Kreitzer A.C., Gee K.R., Archer E.A., Regehr W.G. (2000) Monitoring presynaptic calcium dynamics in projection fibers by in vivo loading of a novel calcium indicator. Neuron. 27, 25–32.

    Article  CAS  PubMed  Google Scholar 

  53. Friedrich R.W., Korsching S.I., (1997) Combinatorial, and chemotropic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron, 18, 737–752.

    Article  CAS  PubMed  Google Scholar 

  54. Wachowiak M., Cohen L.B., (2001) . Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron, Neuron, 32: 725–737.

    Google Scholar 

  55. Yaksi E., Friedrich R.W. (2006) Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat. Methods. 5:377–383.

    Article  CAS  Google Scholar 

  56. Vucinic D., Cohen L.B., and Kosmidis E.K. (2004), Presynaptic center-surround inhibition shapes sensory input to the mouse olfactory bulb. J. Neurophysiology, 2006 95:1881–1887.

    Article  Google Scholar 

  57. Lam Y.-W., Cohen L.B., Wachowiak M., Zochowski M.R., (2000), Odors elicit three different oscillations in the turtle olfactory bulb. J. Neuroscience, 20:749–762.

    CAS  Google Scholar 

  58. Wachowiak M., Cohen L.B., (1999), Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in the lobster and turtle. J. Neuroscience, 19, 8808–8817.

    CAS  Google Scholar 

  59. Ross W.N., B.M. Salzberg L.B. Cohen A. Grinvald H.V. Davila A.S. Waggoner, Wang C.H. (1977). Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons : Optical measurement of membrane potential. J Memb. Biol, 33, 141–183.

    Article  CAS  Google Scholar 

  60. Boyle M.B., Cohen L.B. (1980). Birefringence signals that monitor membrane potential in cell bodies of molluscan neurons. Fed Proc, 39, 2130.

    Google Scholar 

  61. Orbach H.S., Cohen L.B. (1983). Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: A new method for studying functional organization in the vertebrate central nervous system. J Neuroscience, 3, 2251–2262.

    CAS  Google Scholar 

  62. Orbach H.S., Cohen L.B., Grinvald A. (1985). Optical mapping of electrical activity in rat somatosensory and visual cortex. J Neuroscience, 5, 1886–1895.

    CAS  Google Scholar 

  63. Grynkiewicz G., Poenie M., Tsien R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 260:3440–3450.

    CAS  PubMed  Google Scholar 

  64. Gross E., Bedlack R.S., Loew L.M. (1994). Dual-wavelength ratiometric fluorescence measurements of the membrane dipole potential. Biophysical J. 67, 208–216.

    Article  CAS  Google Scholar 

  65. Braddick H.J.J. (1960). Photoelectric photometry. Rep Prog Physics, 23, 154–175.

    Article  CAS  Google Scholar 

  66. Malmstadt H.V., Enke C.G., Crouch S.R., Harlick G.. (1974). Electronic Measurements for scientists, Benjamin, Menlo Park, CA.

    Google Scholar 

  67. Helmchen F., Denk W. (2005). “Deep tissue two-photon microscopy”. Nat. Methods 2: 932–940.

    Article  CAS  PubMed  Google Scholar 

  68. Salzberg B.M., Grinvald A., Cohen L.B., Davila H.V., Ross W.N. (1977). Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons. J Neurophysiol, 40, 1281–1291.

    CAS  PubMed  Google Scholar 

  69. London J.A., Zecevic D., Cohen, L.B.. (1987). Simultaneous optical recording of activity from many neurons during feeding in Navanax. J Neurosci, 7, 649–661.

    CAS  PubMed  Google Scholar 

  70. Svoboda K., Denk W., Kleinfeld D., Tank D.W. (1997). “In vivo dendritic calcium dynamics in neocortical pyramidal neurons”. Nature 385: 161–165.

    Article  CAS  PubMed  Google Scholar 

  71. Denk W., Svoboda K. (1997). “Photon upmanship: Why multiphoton imaging is more than a gimmick”. Neuron 18: 351–357.

    Article  CAS  PubMed  Google Scholar 

  72. Svoboda K., Yasuda R. (2006). “Principles of two-photon excitation microscopy and its applications to neuroscience”. Neuron 50: 823–839.

    Article  CAS  PubMed  Google Scholar 

  73. Inoue S. (1986) Video Microscopy. Plenum Press, New York. p 128.

    Google Scholar 

  74. Kleinfeld D., Delaney K.R.. (1996). Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comparative Neurology, 375, 89–108.

    Article  CAS  Google Scholar 

  75. Cohen L.B., Keynes R.D. (1971). Changes in light scattering associated with the action potential in crab nerves. J. Physiol (Lond), 212, 259–275.

    CAS  Google Scholar 

  76. Petran M., Hadravsky M. (1966). Czechoslovakian patent 7720.

    Google Scholar 

  77. Denk W, Strickler J.H., Webb W.W. (1990). “Two-photon laser scanning fluorescence microscopy”. Science 248: 73–76.

    Article  CAS  PubMed  Google Scholar 

  78. Yuste R., W. Denk. (1995). Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684.

    Article  CAS  PubMed  Google Scholar 

  79. Loew L.M. (1993). Confocal microscopy of potentiometric fluorescent dyes. Methods Cell Biol 38, 195–209.

    Article  CAS  PubMed  Google Scholar 

  80. Shaw R. (1979). Photographic detectors. Appl Optics Optical Eng, 7, 121–154.

    CAS  Google Scholar 

  81. Hamer F.M. (1964). The Cyanine Dyes and Related Compounds, Wiley, New York.

    Google Scholar 

  82. Loew L.M., Cohen L.B., Dix J., Fluhler E.N., Montana V., Salama G., Wu J.Y. (1992). A napthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Memb. Biology, 130, 1–10.

    CAS  Google Scholar 

  83. Rohr S., Salzberg B.M. (1994). Multiple site optical recording of transmembrane voltage in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys J. 67, 1301–1315.

    Article  CAS  PubMed  Google Scholar 

  84. Gonzalez J.E., Tsien R.Y. (1995). Voltage sensing by fluorescence energy transfer in single cells. Biophysical J, 69, 1272–1280.

    Article  CAS  Google Scholar 

  85. Cacciatore T.W., Brodfuehrer P.D., Gonzalez J.E., Jiang T., Adams S.R., Tsien R.Y., Kristan W.B. Jr., Kleinfeld D. (1999) Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes. Neuron. 23: 449–459.

    Article  CAS  PubMed  Google Scholar 

  86. Briggman K.L., Kristan W.B. (2006) Imaging dedicated and multifunctional neural circuits generating distinct behaviors. J Neurosci. 26:10925–10933.

    Article  CAS  PubMed  Google Scholar 

  87. Bouevitch O., Lewis A., Pinevsky I., Wuskell J., Loew L. (1993). Probing membrane potential with non-linear optics. Biophysical J, 65, 672–679.

    Article  CAS  Google Scholar 

  88. Millard A.C., Jin L., Wuskell J.P., Boudreau D.M., Lewis A., Loew L.M. (2005) Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes. J Membr Biol. 208:103–111.

    Article  CAS  PubMed  Google Scholar 

  89. Dombeck D.A., Sacconi L., Blanchard-Desce M., Webb W. W. (2005) Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. J Neurophysiol. 94:3628–3636.

    Article  PubMed  Google Scholar 

  90. Hickie C., Wenner P., O’Donovan M., Tsau Y., Fang J., Cohen L.B. (1996). Optical monitoring of activity from individual and identified populations of neurons retrogradely labeled with voltage-sensitive dyes. Abs Soc Neuroscience, 22, 321.

    Google Scholar 

  91. Nirenberg S., Cepko C. (1993). Targeted ablation of diverse cell classes in the nervous system in vivo. J Neuroscience, 13, 3238–3251.

    CAS  Google Scholar 

  92. Siegel M.S., Isacoff E.Y., (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–41.

    Article  CAS  PubMed  Google Scholar 

  93. Ataka K., Pieribone V.A. (2002) A genetically-targetable fluorescent probe of channel gating with rapid kinetics. Biophysical J., 82, 509–516.

    Article  CAS  Google Scholar 

  94. Baker B.J., Lee H., Pieribone V.A., Cohen L.B., Isacoff E.Y., Knopfel T., Kosmidis E.K. (2007) Fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J. Neuroscience Methods, 161: 32–38.

    Article  CAS  Google Scholar 

  95. Dimitrov D., He Y., Mutoh H., Baker B.J., Cohen L. Akemann W., and Knopfel T. (2007) Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLOS One, 2(5); e440.

    Article  PubMed  CAS  Google Scholar 

  96. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435: 1239–1243.

    Article  CAS  PubMed  Google Scholar 

  97. Baird G.S., Zacharias D.A., Tsien R.Y. (1999). “Circular permutation and receptor insertion within green fluorescent proteins”. Proc. Natl. Acad. Sci. U S A 96: 11241–11246.

    Article  CAS  PubMed  Google Scholar 

  98. Nagai T., Sawano A., Park E.S., Miyawaki A. (2001). “Circularly permuted green fluorescent proteins engineered to sense Ca2+”. Proc. Natl. Acad. Sci. U S A 98: 3197–3202.

    Article  CAS  PubMed  Google Scholar 

  99. Nakai J., Ohkura M., Imoto K. (2001). “A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein”. Nat. Biotechnol. 19: 137–141.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang J., Campbell R.E., Ting A.Y., Tsien R.Y. (2002). “Creating new fluorescent probes for cell biology”. Nat Rev Mol Cell Biol 3(12): 906–918.

    Article  CAS  PubMed  Google Scholar 

  101. Ohkura M., Matsuzaki M., Kasai H., Imoto K., Nakai J. (2005). “Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines”. Anal. Chem. 77: 5861–5869.

    Article  CAS  PubMed  Google Scholar 

  102. Reiff D.F., Ihring A., Guerrero G., Isacoff E.Y., Joesch M., Nakai J., Borst A. (2005). “In vivo performance of genetically encoded indicators of neural activity in flies”. J. Neurosci. 25: 4766–4778.

    Article  CAS  PubMed  Google Scholar 

  103. Miyawaki A., Llopis J., Heim R., McCaffery J.M., Adams J.A., Ikura M., Tsien R.Y. (1997). “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin”. Nature 388: 882–887.

    Article  CAS  PubMed  Google Scholar 

  104. Miyawaki A. (2005). “Innovations in the imaging of brain functions using fluorescent proteins”. Neuron 48: 189–199.

    Article  CAS  PubMed  Google Scholar 

  105. Hasan M.T., Friedrich R.W., Euler T., Larkum M.E., Giese G., Both M., Duebel J., Waters J., Bujard H., Griesbeck O., Tsien R.Y., Nagai T., Miyawaki A., Denk W. (2004). “Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control”. PLoS Biol. 2: 763–775.

    Article  CAS  Google Scholar 

  106. Nagai T., Yamada S., Tominaga T., Ichikawa M., Miyawaki A. (2004). “Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins”. Proc. Natl. Acad. Sci. U S A 101: 10554–10559.

    Article  CAS  PubMed  Google Scholar 

  107. Diez-Garcia J., Matsushita S., Mutoh H., Nakai J., Ohkura M., Yokoyama J., Dimitrov D., Knopfel T. (2005). “Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein”. Eur. J. Neurosci. 22: 627–635.

    Article  PubMed  Google Scholar 

  108. Garaschuk O., Griesbeck O., Konnerth A. (2007). “Troponin C-based biosensors: A new family of genetically encoded indicators for in vivo calcium imaging in the nervous system”. Cell Calcium. in press.

    Google Scholar 

  109. Heim N. and O. Griesbeck (2004). “Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein”. J. Biol. Chem. 279: 14280–14286.

    Article  CAS  PubMed  Google Scholar 

  110. Mank M., Reiff D.F., Heim N., Friedrich M.W., Borst A., Griesbeck O. (2006). “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change”. Biophys. J. 90: 1790–1796.

    Article  CAS  PubMed  Google Scholar 

  111. Heim N., Garaschuk O., Friedrich M.W., Mank M., Milos R.I., Kovalchuk Y., Konnerth A., Griesbeck O. (2007). “Improved calcium imaging in transgenic mice expressing a troponin-C based biosensor”. Nature Methods 4: 127–129.

    Article  CAS  PubMed  Google Scholar 

  112. Garaschuk O., Milos R.I., Konnerth A. (2006). “Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo”. Nat. Prot. 1: 380–386.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to their collaborators Vicencio Davila, Amiram Grinvald, Kohtaro Kamino, Les Loew, Bill Ross, Brian Salzberg, Dejan Vucinic, Alan Waggoner, Matt Wachowiak, and Jian-young Wu for numerous discussions about optical methods. The experiments carried out in our laboratories were supported by NIH grants DC05259 and NS42739, Deutsche Forschungsgemeinschaft (SFB 391 and SFB 596) and the Bundesministerium für Bildung und Forschung (NGFN-2).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Homma, R. et al. (2009). Wide-Field and Two-Photon Imaging of Brain Activity with Voltage and Calcium-Sensitive Dyes. In: Hyder, F. (eds) Dynamic Brain Imaging. METHODS IN MOLECULAR BIOLOGY™, vol 489. Humana Press. https://doi.org/10.1007/978-1-59745-543-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-543-5_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-74-9

  • Online ISBN: 978-1-59745-543-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics