Skip to main content

Fractal Characterization of Complexity in Dynamic Signals: Application to Cerebral Hemodynamics

  • Protocol
Dynamic Brain Imaging

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 489))

Abstract

We introduce the concept of spatial and temporal complexity with emphasis on how its fractal characterization for 1D, 2D or 3D hemodynamic brain signals can be carried out. Using high-resolution experimental data sets acquired in animal and human brain by noninvasive methods – such as laser Doppler flowmetry, laser speckle, near infrared, or functional magnetic resonance imaging – the spatiotemporal complexity of cerebral hemodynamics is demonstrated. It is characterized by spontaneous, seemingly random (that is disorderly) fluctuation of the hemodynamic signals. Fractal analysis, however, proved that these fluctuations are correlated according to the special order of self-similarity. The degree of correlation can be assessed quantitatively either in the temporal or the frequency domain respectively by the Hurst exponent (H) and the spectral index (β). The values of H for parenchymal regions of white and gray matter of the rat brain cortex are distinctly different. In human studies, the values of β were instrumental in identifying age-related stiffening of cerebral vasculature and their potential vulnerability in watershed areas of the brain cortex such as in borderline regions between frontal and temporal lobes. Biological complexity seems to be present within a restricted range of H or β values which may have medical significance because outlying values can indicate a state of pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Norris, V., Cabin, A. and Zemirline, A. (2005) Hypercomplexity. Acta Biotheor 53, 313–330.

    Article  PubMed  Google Scholar 

  2. Krone, G., Mallot, H., Palm, G. and Schuz, A. (1986) Spatiotemporal receptive fields: A dynamical model derived from cortical architectonics. Proc R Soc Lond B Biol Sci 226, 421–444.

    Article  CAS  PubMed  Google Scholar 

  3. Grassberger, P. and Procaccia, I. (1983) Measuring the strangeness of strange attractors. Physica D 9, 189–208.

    Article  Google Scholar 

  4. Kaplan, D. and Glass, L. (1997) Understanding Nonlinear Dynamics. Springer-Verlag, New York.

    Google Scholar 

  5. Falconer, K. (1990) Fractal geometry: Mathematical Foundations and Applications. Wiley, Chichester, New York.

    Google Scholar 

  6. Eke, A., Herman, P., Kocsis, L. and Kozak, L. R. (2002) Fractal characterization of complexity in temporal physiological signals. Physiol Meas 23, R1–38.

    Article  CAS  PubMed  Google Scholar 

  7. Beran, J. (1994) Statistics for Long Memory Processes. Chapman and Hall, New York.

    Google Scholar 

  8. Bassingthwaighte, J., Liebovitch, L. and West, B. (1994) Fractal Physiology. Oxford University Press, New York, Oxford.

    Google Scholar 

  9. Mandelbrot, B. (1983) The Fractal Geometry of Nature. WH Freeman, San Francisco.

    Google Scholar 

  10. Avnir, D., Biham, O., Lidar, D. and Malcai, O. (1998) Is the geometry of nature fractal? Science 279, 39–40.

    Google Scholar 

  11. Mandelbrot, B. (1985) Self-affine Fractals and Fractal Dimension. Phys Scripta 32,257–260.

    Article  Google Scholar 

  12. Dunn, A. K., Bolay, H., Moskowitz, M. A. and Boas, D. A. (2001) Dynamic Imaging Of Cerebral Blood Flow Using Laser Speckle. J Cereb Blood Flow Metab 21, 195–201.

    Article  CAS  PubMed  Google Scholar 

  13. Eke, A. (2003) Fractal, chaos, physiological complexity. In: Studia Physiologica (Series Ed.: A. Juhasz-Nagy) 13,1–157, Scientia Kiado, Budapest.

    Google Scholar 

  14. Eke, A., Herman, P., Bassingthwaighte, J. B., Raymond, G. M., Percival, D. B., Cannon, M., Balla, I. and Ikrenyi, C. (2000) Physiological time series: Distinguishing fractal noises from motions. Pflugers Arch 439, 403–415.

    Article  CAS  PubMed  Google Scholar 

  15. Eke, A., Herman, P. and Hajnal, M. (2006) Fractal and noisy CBV dynamics in humans: Influence of age and gender. J Cereb Blood Flow Metab 26, 891–898.

    Article  PubMed  Google Scholar 

  16. Herman, P. and Eke, A. (2006) Nonlinear analysis of blood cell flux fluctuations in the rat brain cortex during stepwise hypotension challenge. J Cereb Blood Flow Metab 26,1189–1197.

    Article  PubMed  Google Scholar 

  17. Herman, P., Kida, I., Sanganahalli, B., Hyder, F. and Eke, A. (2005) Fractal correlation structure in fMRI data of rat brain. J Cereb Blood Flow Metab 25, S379.

    Article  Google Scholar 

  18. Herman, P., Kocsis, L., Portöro, I. and Eke, A. (2007) Heterogenous response in CBF during autoregulation: A non-invasive laser speckle study in the rat brain cortex. Brain‘07. The 23rd International Symposium on Cerebral Blood Flow, Metabolism and Function, Osaka, Japan.

    Google Scholar 

  19. Davies, R. B. and Harte, D. S. (1987) Test for Hurst effect. Biometrika 74, 95–101.

    Article  Google Scholar 

  20. Bassingthwaighte, J. B. and Raymond, G. M. (1995) Evaluation of the dispersional analysis method for fractal time series. Ann Biomed Eng 23, 491–505.

    Article  CAS  PubMed  Google Scholar 

  21. Cannon, M., Percival, D. B., Caccia, D., Raymond, G. M. and Bassingthwaighte, J. B. (1997) Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. Physica A 241, 606–626.

    Article  Google Scholar 

  22. Eke, A., Herman, P., Bassingthwaighte, J. B., Raymond, G. M., Balla, I. and Ikrenyi, C. (1997) Temporal fluctuations in regional red blood cell flux in the rat brain cortex is a fractal process. Adv Exp Med Biol 428,703–709.

    CAS  PubMed  Google Scholar 

  23. Turcotte, D. L., Malamud, B. D., Guzzetti, F. and Reichenbach, P. (2002) Self-organization, the cascade model, and natural hazards. Proc Natl Acad Sci USA 99, 2530–2537.

    Article  PubMed  Google Scholar 

  24. Waliszewski, P. (2005) A Principle Of Fractal-Stochastic Dualism And Gompertzian Dynamics Of Growth And Self-Organization. Biosystems 82, 61–73.

    Article  PubMed  Google Scholar 

  25. Eke, A. and Herman, P. (1999) Fractal analysis of spontaneous fluctuations in human cerebral hemoglobin content and itsoxygenation level recorded by NIRS. Adv Exp Med Biol 471, 49–55.

    CAS  PubMed  Google Scholar 

  26. Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., Li, C., Murray, T., Ovetsky, Y., Pidikiti, D. and Thomas, R. (1998) A novel method for fast imaging of brain function, non-invasively, with light. Opt. Express 2, 411–423.

    Article  CAS  PubMed  Google Scholar 

  27. Intaglietta, M. (1990) Vasomotion and flowmotion – physiological mechanisms and clinical evidence. Vasc Med Rev 1, 101–112.

    Article  Google Scholar 

  28. Schroeter, M. L., Schmiedel, O. and von Cramon, D. Y. (2004) Spontaneous low-frequency oscillations decline in the aging brain. J Cereb Blood Flow Metab 24, 1183–1191.

    Google Scholar 

  29. Nilsson, H. and Aalkjaer, C. (2003) Vasomotion: Mechanisms and physiological importance. Mol Interv 3, 79–89, 51.

    Article  CAS  PubMed  Google Scholar 

  30. Miklossy, J. (2003) Cerebral hypoperfusion induces cortical watershed microinfarcts which may further aggravate cognitive decline in Alzheimer’s disease. Neurol Res 25, 605–610.

    Article  PubMed  Google Scholar 

  31. Jorgensen, L. and Torvik, A. (1969) Ischemic cerebrovascular diseases in an autopsy series. 2. Prevalence, location, pathogenesis, and clinical course of cerebral infarcts. J Neurol Sci 9, 285–320.

    Article  CAS  PubMed  Google Scholar 

  32. Yong, S. W., Bang, O. Y., Lee, P. H. and Li, W. Y. (2006) Internal and cortical border-zone infarction: Clinical and diffusion-weighted imaging features. Stroke 37, 841–846.

    Article  PubMed  Google Scholar 

  33. Eke, A. (1993) Multiparametric imaging of microregional circulation over the brain cortex by video reflectometry. Adv Exp Med Biol 333, 183–191.

    CAS  PubMed  Google Scholar 

  34. Eke, A., Hutiray, G. and Kovach, A. G. (1979) Induced hemodilution detected by reflectometry for measuring microregional blood flow and blood volume in cat brain cortex. Am J Physiol 236, H759–768.

    CAS  PubMed  Google Scholar 

  35. Herman, P., Kocsis, L. and Eke, A. (2001) Fractal branching pattern in the pial vasculature in the cat. J Cereb Blood Flow Metab 21, 741–753.

    Article  CAS  PubMed  Google Scholar 

  36. Hyder, F., Kida, I., Behar, K. L., Kennan, R. P., Maciejewski, P. K. and Rothman, D. L. (2001) Quantitative functional imaging of the brain: Towards mapping neuronal activity by bold fMRI. NMR Biomed 14, 413–431.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contribution of Ms. Andrea Mile to the human LED Imager study and Drs. Fahmeed Hyder, Ikuhiro Kida and Basavaraju G. Sanganahalli to the MRI study. This work was supported by the Hungarian Research Foundation (OTKA) by its grants T016953, T34122 and the High Performance Computing of the Hungarian National Information Infrastructure Development Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Herman, P., Kocsis, L., Eke, A. (2009). Fractal Characterization of Complexity in Dynamic Signals: Application to Cerebral Hemodynamics. In: Hyder, F. (eds) Dynamic Brain Imaging. METHODS IN MOLECULAR BIOLOGY™, vol 489. Humana Press. https://doi.org/10.1007/978-1-59745-543-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-543-5_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-74-9

  • Online ISBN: 978-1-59745-543-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics