Skip to main content

Multiplexed Isobaric Tagging Protocols for Quantitative Mass Spectrometry Approaches to Auditory Research

  • Protocol
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 493))

Modern biologists have at their disposal a large array of techniques used to assess the existence and relative or absolute quantity of any molecule of interest in a sample. However, implementing most of these procedures can be a daunting task for the first time, even in a lab with experienced researchers. Just choosing a protocol to follow can take weeks while all of the nuances are examined and it is determined whether a protocol will (a) give the desired results, (b) result in interpretable and unbiased data, and (c) be amenable to the sample of interest. We detail here a robust procedure for labeling proteins in a complex lysate for the ultimate differential quantification of protein abundance following experimental manipulations. Following a successful outcome of the labeling procedure, the sample is submitted for mass spectrometric analysis, resulting in peptide quantification and protein identification. While we will concentrate on cells in culture, we will point out procedures that can be used for labeling lysates generated from other tissues, along with any minor modifications required for such samples. We will also outline, but not fully document, other strategies used in our lab to label proteins prior to mass spectrometric analysis, and describe under which conditions each procedure may be desirable. What is not covered in this chapter is anything but the most brief introduction to mass spectrometry (instrumentation, theory, etc.), nor do we attempt to cover much in the way of software used for post hoc analysis. These two topics are dependant upon one’s resources, and where applicable, one’s collaborators. We strongly encourage the reader to seek out expert advice on topics not covered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, L. and Seilhamer, J. (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537.

    Article  CAS  PubMed  Google Scholar 

  2. Gygi, S., Rochon, Y., Franza, B., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19, 1720–1730.

    CAS  PubMed  Google Scholar 

  3. Grant, S. and Blackstock, W. (2001) Proteomics in neuroscience: From protein to network. J. Neurosci. 21, 8315–8318.

    CAS  PubMed  Google Scholar 

  4. Gavin, A., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636.

    Article  CAS  PubMed  Google Scholar 

  5. Coughenour, H., Spaulding, R., and Thompson, C. (2004) The synaptic vesicle proteome: A comparative study in membrane protein identification. Proteomics 4, 3141–3155.

    Article  CAS  PubMed  Google Scholar 

  6. Andersen, J., Lam, Y., Leung, A., Ong, S., Lyon, C., Lamond, A., and Mann, M. (2005) Nucleolar proteome dynamics. Nature 433, 77–83.

    Article  CAS  PubMed  Google Scholar 

  7. Yates, J., Gilchrist, A., Howell, K., and Bergeron, J. (2005) Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell Biol. 6, 702–714.

    Article  CAS  PubMed  Google Scholar 

  8. Langnaese K., Seidenbecher C., Wex H., Seidel B., Hartung K., Appeltauer U., Garner A., Voss B., Mueller B., Garner C. C., and Gundelfinger E. D. (1996) Protein components of a rat brain synaptic junctional protein preparation. Brain Res. Mol. Brain Res. 42, 118–122.

    Article  CAS  PubMed  Google Scholar 

  9. Yates, J. (1998) Mass spectrometry and the age of the proteome. J. Mass Spectrometry 33, 1–19.

    Article  CAS  Google Scholar 

  10. Yates, J. (2000) Mass spectrometry. From genomics to proteomics. Trends Genet. 16, 5–8.

    Article  CAS  PubMed  Google Scholar 

  11. Fountoulakis, M. (2004) Application of proteomics technologies in the investigation of the brain. Mass Spectrometry Rev 23, 231–258.

    Article  CAS  Google Scholar 

  12. Ferguson, P. and Smith, R. (2003) Proteome analysis by mass spectrometry. Ann. Rev. Biophys. Biomol. Struct. 32, 399–424.

    Article  CAS  Google Scholar 

  13. Mann, M., Hendrickson, R., and Pandey, A. (2001) Analysis of proteins and proteomes by mass spectrometry. Ann. Rev. Biochem. 70, 437–473.

    Article  CAS  PubMed  Google Scholar 

  14. Gygi, S., Rist, B., Gerber, S., Turecek, F., Gelb, M., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999.

    Article  CAS  Google Scholar 

  15. Shiio, Y. and Aebersold, R. (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nature Prot. 1, 139–145.

    Article  CAS  Google Scholar 

  16. Ong, S. and Mann, M. (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nature Prot. 1, 2650–2660.

    Article  CAS  Google Scholar 

  17. Amanchy, R., Kalume, D., and Pandey, A. (2005) Stable isotope labeling with amino acids in cell culture (SILAC) for studying dynamics of protein abundance and posttranslational modifications. Sci. STKE 267, p12.

    Google Scholar 

  18. Blagoev, B., Ong, S., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnol. 22, 1139–1145.

    Article  CAS  Google Scholar 

  19. Krijgsveld, J., Ketting, R. F., Mahmoudi, T., Johansen, J., Artal-Sanz, M., Verrijzer, C. P., Plasterk, R. H., and Heck, A. J. (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol. 21, 927–931.

    Article  CAS  PubMed  Google Scholar 

  20. Julka, S. and Regnier, F. (2004) Quantification in Proteomics through Stable Isotope Coding: A Review. J. Proteome Res. 3, 350–363.

    Article  CAS  PubMed  Google Scholar 

  21. Rivolta, M., Grix, N., Lawlor, P., Ashmore, J., Jagger, D., and Holley, M. (1998) Auditory hair cell precursors immortalized from the mammalian inner ear. Proc. Biol. Sci. 265, 1595–1603.

    Article  CAS  PubMed  Google Scholar 

  22. Rivolta, M. and Holley, M. (2002) Cell lines in inner ear research. J. Neurobiol. 53, 306–318.

    Article  PubMed  Google Scholar 

  23. Bork, P., Jensen, L. J., von Mering, C., Ramani, A. K., Lee, I., and Marcotte, E. M. (2004) Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol. 14, 292–299.

    Article  CAS  PubMed  Google Scholar 

  24. Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R. M., and Ideker, T. (2005) Conserved Patterns of Protein Interaction in Multiple Species. Proc. Natl. Acad. Sci. U.S.A. 102, 1974–1979.

    Article  CAS  PubMed  Google Scholar 

  25. Sharan, R., Ulitsky, I., and Shamir, R. (2007) Network-Based Prediction of Protein Function. Mol. Systems Biol. 3, 88.

    Google Scholar 

  26. Fernandez-Ballester, G. and Serrano, L. (2006) Prediction of Protein-Protein Interaction Based on Structure. Meth. Mol. Biol. 340, 207–234.

    CAS  Google Scholar 

  27. Iragne, F., Nikolski, M., Mathieu, B., Auber, D., and Sherman, D. (2005) Proviz: Protein interaction visualization and exploration. Bioinformatics 21, 272–274.

    Article  CAS  PubMed  Google Scholar 

  28. Yan, W., Lee, H., Yi, E. C., Reiss, D., Shannon, P., Kwieciszewski, B. K., Coito, C., Li, X. J., Keller, A., Eng, J., Galitski, T., Goodlett, D. R., Aebersold, R., and Katze, M. G. (2004) System-based proteomic analysis of the interferon response in human liver cells. Genome Biol. 5, R54.

    Article  PubMed  Google Scholar 

  29. Suderman, M. and Hallett, M. (2007) Tools for Visually Exploring Biological Networks. Bioinformatics 23, 2651–2659.

    Article  CAS  PubMed  Google Scholar 

  30. Han, K., Park, B., Kim, H., Hong, J., and Park, J. (2004) Hpid: The human protein interaction database. Bioinformatics 20, 2466–2470.

    Article  CAS  PubMed  Google Scholar 

  31. Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L., and Cesareni, G. (2007) Mint: The molecular interaction database. Nucleic Acids Res. 35, D572–574.

    Article  CAS  PubMed  Google Scholar 

  32. Jones, P., Cote, R. G., Cho, S. Y., Klie, S., Martens, L., Quinn, A. F., Thorneycroft, D., and Hermjakob, H. (2008) Pride: New developments and new datasets. Nucleic Acids Res. 36, D878–D883.

    Article  CAS  PubMed  Google Scholar 

  33. Jones, P., Cote, R. G., Martens, L., Quinn, A. F., Taylor, C. F., Derache, W., Hermjakob, H., and Apweiler, R. (2006) Pride: A public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 34, D659–D663.

    Article  CAS  PubMed  Google Scholar 

  34. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504.

    Article  CAS  PubMed  Google Scholar 

  35. Krüger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C.A., Fomer, F., Schmidt, S., Zanivan, S., Fössler, R., Mann, M. (2008) SILAC mouse for quantitative proteomics uncovers Kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vetter, D.E., Basappa, J., Turcan, S. (2009). Multiplexed Isobaric Tagging Protocols for Quantitative Mass Spectrometry Approaches to Auditory Research. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology™, vol 493. Humana Press. https://doi.org/10.1007/978-1-59745-523-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-523-7_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-62-6

  • Online ISBN: 978-1-59745-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics