Skip to main content

Nanofluidic Channel Fabrication and Manipulation of DNA Molecules

  • Protocol
  • First Online:
Micro and Nano Technologies in Bioanalysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Confining DNA molecules in a nanofluidic channel, particularly in channels with cross sections comparable to the persistence length of the DNA molecule (about 50 nm), allows the discovery of new biophysical phenomena. This sub-100 nm nanofluidic channel can be used as a novel platform to study and analyze the static as well as the dynamic properties of single DNA molecules, and can be integrated into a biochip to investigate the interactions between protein and DNA molecules. For instance, nanofluidic channel arrays that have widths of approximately 40 nm, depths of 60 nm, and lengths of 50 μm are created rapidly and exactly by a focused-ion beam milling instrument on a silicon nitride film; and the open channels are sealed with anodic bonding technology. Subsequently, lambda phage DNA (λ-DNA; stained with the fluorescent dye, YOYO-1) molecules are introduced into these nanoconduits by capillary force. The movements of the DNA molecules, e.g. stretching, recoiling, and transporting along channels, are studied with fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tegenfeldt, J. O., Prinz, C., Cao, H., Huang, R. L., Austin, R. H., Chou, S. Y., Cox, E. C., Sturm, J. C, (2004) Micro- and nanofluidics for DNA analy. Anal. Bioanal. Chem. 378, 1678–1692

    Article  CAS  Google Scholar 

  2. van der Heyden, F. H. J., Stein, D., Dekker, C. (2005) Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95, 116104

    Article  Google Scholar 

  3. Baldessari, F. and Santiago, J. G. (2006) Electrophoresis in nanochannels: brief review and speculation. J. Nanobiotechnology. 4, 12–16

    Article  Google Scholar 

  4. Eijkel, J. C. T. and van den Berg, A. (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluids. 1, 249–267

    Article  CAS  Google Scholar 

  5. Henrickson, S. E., Misakian, M., Robertson, B., Kasianowicz, J. J. (2000) Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 85, 3057–3060

    Article  CAS  Google Scholar 

  6. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J., Golovchenko, J. A. (2001) Ion-beam sculpting at nanometre length scales. Nature. 412, 166–169

    Article  CAS  Google Scholar 

  7. Dekker, C. (2007) Solid state nanopores. Nat. Nanotechnol 2, 209–215

    Article  CAS  Google Scholar 

  8. Lin, Y., Huang, M., Chang, H. (2005) Nanomaterials and chip-based nanostructures for capillary electrophoretic separations for DNA. Electrophoresis. 26, 320–330

    Article  CAS  Google Scholar 

  9. Mijatovic, D., Eijkel, J. C. T., van den Berg, A. (2005) Technologies for nanofluidic systems: top-down vs. bottom-up. Lab. Chip. 5, 492–500

    Article  CAS  Google Scholar 

  10. Biance, A. L., Gierak, J., Bourhis, E., Madouri, A., Lafosse, X., Patriarche, G., Oukhaled, G., Ulysse, C., Galas, J. C., Chen, Y., Auvray, L. (2006) Focused ion beam sculpted membranes for nanoscience tooling. Microelectro. Eng. 83, 1474–1477

    Article  CAS  Google Scholar 

  11. Squires, T. M. and Quake, S. R. (2005) Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1025

    Article  CAS  Google Scholar 

  12. Stein, D., van der Heyden, F. H. J., Koopmans, W. J. A., Dekker, C. (2006) Pressure-driven transport of confined DNA polymers in fluidic channels. Proc. Natl. Acad. Sci. U.S.A. 103, 15853–15858

    Article  CAS  Google Scholar 

  13. Cao, H., Yu, Z. N., Wang, J., Tegenfeldt, J. O., Austin, R. H., Chen, E., Wu, W., Chou, S. Y. (2002) Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett. 81,171–176

    Article  Google Scholar 

  14. Ahpan, H., Mondin, G., Hegelbach, N. G., de Roij, N. F., Staufer, U. (2006) Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force. J. Colliod Interface Sci. 293, 151–157

    Article  Google Scholar 

  15. de Boer, M. J., Tjerkstra, R. W., Berenschot, J. W., Jansen, H. V., Burger, G. J., Gardeniers, J. G. E., Elwenspoek, M., van den Berg, A. (2000) Micromachining of buried micro channels in silicon. J. Microelectromech. Syst. 9, 94–103

    Article  CAS  Google Scholar 

  16. Guo, L. J., Cheng, X., Chou, C. (2004) Fabrication of size controllable nanofluidics channels by nanoimprinting and its applications for DNA stretching. Nano. Lett. 4, 49–73

    Google Scholar 

  17. Yanagi, H. and Kwawi, Y. (2004) Organic field effect transistor with narrow channel fabricated using focused ion beam. J. Appl. Phys. 43, L1575–L1577

    Article  CAS  Google Scholar 

  18. Craighead, H. G. (2000) Nanoelectromechanical systems. Science. 290, 1532–1535

    Article  CAS  Google Scholar 

  19. Mannion, J. T., Reccius, C. H., Cross, J. D., Craighead, H. G. (2006) Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophys. J. 90, 4538–4546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Natural Science Foundation of China (No. 60771048, No. 60025516, and No. 10334100), and the Major Project of National Science Foundation of China (No. 60138010), and partly supported by National Center for Nanoscience and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Ge Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, KG., Niu, H. (2009). Nanofluidic Channel Fabrication and Manipulation of DNA Molecules. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics