Skip to main content

ZnO Nanorods as an Intracellular Sensor for pH Measurements

  • Protocol
  • First Online:
Micro and Nano Technologies in Bioanalysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

High-density ZnO nanorods of 60–80 nm in diameter and 500–700 nm in length grown on the silver-coated tip of a borosilicate glass capillary (0.7 μm in diameter) demonstrate a remarkable linear response to proton H3O+ concentrations in solution. These nanorods were used to create a highly sensitive pH sensor for monitoring in vivo biological process within single cells. The ZnO nanorods exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl microelectrode. The potential difference was linear over a large dynamic range (pH, 4–11) and had a sensitivity equal to 51.88 mV/pH at 22°C, which could be understood in terms of changes in surface charge during protonation and deprotonation. Vertically grown nanoelectrodes of this type can be smoothly and gently applied to penetrate a single living cell without causing cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., and Lieber, C. M. (2005). Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 23, 1294–1301

    Article  CAS  Google Scholar 

  2. Cui, Y., Wei, Q., Park, H., Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292

    Article  CAS  Google Scholar 

  3. Popovtzer, R., Neufeld, T., Ron, E. Z., Rishpon, J., and Shacham-Diamand, Y. (2006). Electrochemical detection of biological reactions using a novel nano-bio-chip array. Sensors and Actuators B 119, 664–672

    Article  Google Scholar 

  4. Cai, X., Klauke, N., Glidle, A., Cobbold, P., Smith G. L., and Cooper, J. M. (2002). Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. Analytical Chemistry 74, 908–914

    Article  CAS  Google Scholar 

  5. Zwicker, G. and Jacobi, K. (1983). Site-specific interaction of H2O with ZnO single-crystal surfaces studied by thermal desorption and UV photoelectron spectroscopy. Surface Science 131, 179–194

    Article  CAS  Google Scholar 

  6. Parker, T. M., Condon, N. G., Lindsay, R., Leibsle, F.M., and Thornton, G. (1998). Imaging the polar (0001–ī) and non-polar (101–ī0) surfaces of ZnO with STM. Surface Science 415, L1046–L1050

    Article  CAS  Google Scholar 

  7. Matsunaga, K., Oba, F., Tanaka, I., and Adachi, H. (1999). Valence band structure of ZnO (1010) surface by cluster calculation. Journal of Electroceramics 4, 69–80

    Article  CAS  Google Scholar 

  8. Wander, A. and Harrison, N. M. (2001). The stability of polar oxide surfaces: The interaction of H2O with ZnO (0001) and ZnO(0001–ī). Journal of Chemical Physics 115, 2312–2316

    Article  CAS  Google Scholar 

  9. Wander, A., Schedin, F., Steadman, P., Norris, A., McGrath, R., Turner, T.S., Thornton, G., and Harrison, N. M. (2001). Stability of polar oxide surfaces. Physical Review Letters 86, 3811–3814

    Article  CAS  Google Scholar 

  10. Dulub, O., Boatner, L. A., and Diebold, U. (2002). STM study of the geometric and electronic structure of ZnO (0001)-Zn, (0001–ī)-o,(101–ī0), and (11\2–ī0) surfaces. Surface Science 519, 201–207

    Article  CAS  Google Scholar 

  11. Kresse, G., Dulub, O., and Diebold, U. (2003). Competing stabilization mechanism for the polar ZnO(0001)-Zn surface. Physical Review B 68, 245409–(15 pages)

    Article  Google Scholar 

  12. Dulub, O., Diebold, U., and Kresse, G. (2003). Novel stabilization mechanism on polar surfaces: Zn(0001)-Zn. Physical Review Letters 90, 016102–(4 pages)

    Article  Google Scholar 

  13. Meyer, B., Marx, D., and Dulub, O. (2004). Partial dissociation of water leads to stable superstructures on the surface of zinc oxide. Angewandte Chemie (International ed. in English) 43, 6642–6645

    Article  Google Scholar 

  14. Meyer, B. (2004). First principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen. Physical Review B 69, 045416–(10 pages)

    Article  Google Scholar 

  15. Dulub, O., Meyer, B., and Diebold, U. (2005). Observation of the dynamical in a water monolayer adsorbed on a ZnO surface. Physical Review Letters 95, 136101–(4 pages)

    Article  Google Scholar 

  16. Glab, S., Hulanicki, A., Edwall, G., and Ingman, F. (1989) Metal-metal oxide and metal oxide electrodes as pH sensors. Analytical Chemistry 21, 29–46

    CAS  Google Scholar 

  17. Cammann, K., Ross, B., Katerkamp, A., Reinbold, J., Grundig, R., and Renneberg, R. (2002). Chemical and Biochemical Sensors. Wiley-VCH verlag GmbH & Co. KGaA, Ullmann’s encyclopedia of industrial chemistry

    Google Scholar 

  18. Wang, H., Nakamura, H., Yao, K., Uehara, M., Nishimura, S., Maeda, H., and Abe, E. (2002). Effect of polyelectrolyte dispersants on the preparation of silica-coated zinc oxide particles in aqueous media. Journal of the American Ceramic Society 85, 1937–1940

    Article  CAS  Google Scholar 

  19. Caldwell, P. C. (1954). An investigation of the intracellular pH of crab muscle fibres by means of micro-glass and micro-tungsten electrode. Journal of Physiology 126, 169–180

    CAS  Google Scholar 

  20. Thomas, R. C. (1974). Intracellular pH of snail neurons measured with a new pH-sensitive glass micro-electrode. Journal of Physiology 238, 159–180

    CAS  Google Scholar 

  21. Yan, Y. and Al-Jassim, M. M. (2005). Structure and energetics of water adsorbed on the ZnO(101–ī0) surface. Physical Review B 72, 235406–(6 pages)

    Article  Google Scholar 

  22. Martins, J. B. L., Longo, E., Salmon, O. D. R., Espinoza, V. A. A., and Taft, C. A. (2004).w The interaction of H2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom study. Chemical Physics Letters 400, 481–486

    Article  CAS  Google Scholar 

  23. Martins, J. B. L., Andres, J., Longo, E., and Taft, C. A. (1996). Properties, dynamics, and electronic structure of condensed systems H2O and H2 interaction with ZnO surfaces: A MNDO, AM1, and PM3 theoretical study with large cluster models. International Journal of Quantum Chemistry 57, 861–870

    Article  CAS  Google Scholar 

  24. Martins, J. B. L., Moliner, V., Andres, J., Longo, E., and Taft, C. A. (1995). A theoretical study of water adsorption on (101–ī0) and (0001) ZnO surfaces: molecular cluster, basis set and effective core potential dependence. Journal of Molecular Structure (Theochem) 330, 347–351

    Article  CAS  Google Scholar 

  25. Stumm, W. and Morgan, J. J. (1981). Precipitation and dissolution. In: Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. (John Wiley&Sons), New York, pp. 230–322

    Google Scholar 

  26. Al-Hilli, S., Öst, A., and Strålfors, P., and Willander, M. (2007). ZnO nanorods as an intracellular sensor for pH measurements. Journal of Applied Physics 102, 084304–(5 pages)

    Article  Google Scholar 

  27. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., and Yang, P. (2003). Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie (International ed. in English) 42, 3031–3034

    Article  CAS  Google Scholar 

  28. Vayssieres, L., Keis, K., Lindquist, S., and Hagfeldt, A. (2001). Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. The Journal of Physical Chemistry B 105, 3350–3352

    Article  CAS  Google Scholar 

  29. Li, Q., Kumar, V., Li, Y., Zhang, H., Marks, T. J., and Chang, R. P. H. (2005). Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chemistry of Materials 17, 1001–1006

    Article  Google Scholar 

  30. Zhou, J., Xu, N., and Wang, Z. L. (2006). Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials 18, 2432–2435

    Article  CAS  Google Scholar 

  31. Lee, S. C., Hamilton, J. S., Trammell, T., Horwitz, B., and Pappone, P. A. (1994). Adrenergic modulation of intracellular pH in isolated brown fat cells from hamster and rat. American Journal of Physiology Cell Physiology 267, C349–C356

    CAS  Google Scholar 

  32. Shrode, L. D., Tapper, H., and Grinstein, S. (1997). Role of intracellular pH in proliferation, transformation, and apoptosis. Journal of Bioenergetics and Biomembranes 29, 393–399

    Article  CAS  Google Scholar 

  33. Strålfors, P. and Honno, R. C. (1989). Insulin-induced dephosphorylation of hormone-sensitive lipase-correlation with lipolysis and cAMP-dependent protein kinase activity. European Journal of Biochemistry 182, 379–385

    Article  Google Scholar 

  34. Danielsson, A., Öst, A., Lystedt, E., Kjolhede, P., Gustavsson, J., Nystrom, F. H., and Strålfors, P. (2005). Insulin resistance in human adipocytes occurs downstream of IRS1 after surgical cell isolation but at the level of phosphorylation of IRS1 in type 2 diabetes. FEBS Journal 272, 141–151

    Article  CAS  Google Scholar 

  35. Pollock, A.S. (1984). Intracellular pH of hepatocytes in primary monolayer culture. American Journal of Physiology. Renal Physiology 246, F738–F744

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Swedish Research Council and Molecular Skin Research Platform within the Faculty of Science at Göteborg University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Willander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Willander, M., Al-Hilli, S. (2009). ZnO Nanorods as an Intracellular Sensor for pH Measurements. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics