Skip to main content

NMR in Peptide Drug Development

  • Protocol
Peptide-Based Drug Design

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 494))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fry, D. and Sun, H. (2006) Utilizing peptide structures as keys for unlocking challenging targets. Mini. Rev. Med. Chem. 6, 979–987.

    Article  CAS  PubMed  Google Scholar 

  2. Valente, A. P., Miyamoto, C. A. and Almeida, F. C. (2006) Implications of protein conformational diversity for binding and development of new biological active compounds. Curr. Med. Chem. 13, 3697–3703.

    Article  CAS  PubMed  Google Scholar 

  3. Craik, D. J. and Clark, R. J. (2005) Structure-based drug design and NMR-based screening. In: Encyclopedia of Molecular Cell Biology and Molecular Medicine (Meyers R. A., ed.). 2nd ed. Wiley-VCH, Weinheim, pp. 517–605.

    Google Scholar 

  4. Fu, R. and Cross, T. A. (1999) Solid-state nuclear magnetic resonance investigation of protein and polypeptide structure. Annu. Rev. Biophys. Biomol. Struct. 28,235–268.

    Article  CAS  PubMed  Google Scholar 

  5. Guthrie, D. J. (1997) 1H nuclear magnetic resonance (NMR) in the elucidation of peptide structure. Methods Mol. Biol. 73, 163–184.

    CAS  PubMed  Google Scholar 

  6. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley Interscience, New York.

    Google Scholar 

  7. Sillerud, L. O. and Larson, R. S. (2006) Nuclear magnetic resonance-based screening methods for drug discovery. Methods Mol. Biol. 316, 227–289.

    PubMed  Google Scholar 

  8. Pellecchia, M. (2005) Solution nuclear magnetic resonance spectroscopy techniques for probing intermolecular interactions. Chem. Biol. 12, 961–971.

    Article  CAS  PubMed  Google Scholar 

  9. Homans, S. W. (2005) Probing the binding entropy of ligand-protein interactions by NMR. Chembiochem 6, 1585–1591.

    Article  CAS  PubMed  Google Scholar 

  10. Homans, S. W. (2004) NMR spectroscopy tools for structure-aided drug design. Angew. Chem. Int. Ed. Engl. 43, 290–300.

    Article  CAS  PubMed  Google Scholar 

  11. Salvatella, X. and Giralt, E. (2003) NMR-based methods and strategies for drug discovery. Chem. Soc. Rev. 32, 365–372.

    Article  CAS  PubMed  Google Scholar 

  12. Meyer, B. and Peters, T. (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. 42, 864–890.

    Article  CAS  Google Scholar 

  13. Fejzo, J., Lepre, C. and Xie, X. (2003) Application of NMR screening in drug discovery. Curr. Top. Med. Chem. 3, 81–97.

    Article  CAS  PubMed  Google Scholar 

  14. Coles, M., Heller, M. and Kessler, H. (2003) NMR-based screening technologies. Drug Discov. Today 8, 803–810.

    Article  CAS  PubMed  Google Scholar 

  15. Pellecchia, M., Sem, D. S. and Wuthrich, K. (2002) NMR in drug discovery. Nat. Rev. Drug. Discov. 1, 211–219.

    Article  CAS  PubMed  Google Scholar 

  16. Hajduk, P. J., Meadows, R. P. and Fesik, S. W. (1999) NMR-based screening in drug discovery. Q. Rev. Biophys. 32, 211–240.

    Article  CAS  PubMed  Google Scholar 

  17. Zartler, E. R. and Shapiro, M. J. (2006) Protein NMR-based screening in drug discovery. Curr. Pharm. Des. 12, 3963–3972.

    Article  CAS  PubMed  Google Scholar 

  18. Leone, M., Freeze, H. H., Chan, C. S. and Pellecchia, M. (2006) The Nuclear Overhauser Effect in the lead identification process. Curr. Drug Discov. Technol. 3, 91–100.

    Article  CAS  PubMed  Google Scholar 

  19. Zartler, E. R. and Shapiro, M. J. (2005) Fragonomics: fragment-based drug discovery. Curr. Opin. Chem. Biol. 9, 366–370.

    Article  CAS  PubMed  Google Scholar 

  20. Schade, M. and Oschkinat, H. (2005) NMR fragment screening: tackling protein-protein interaction targets. Curr. Opin. Drug Discov. Devel. 8, 365–373.

    CAS  PubMed  Google Scholar 

  21. Lepre, C. A., Moore, J. M. and Peng, J. W. (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev. 104, 3641–3676.

    Article  CAS  PubMed  Google Scholar 

  22. Vogtherr, M. and Fiebig, K. (2003) NMR-based screening methods for lead discovery. In: Modern Methods of Drug Discovery (Hillisch, A. and Hilgenfeld, R., ed.). Birhäuser Verlag, Switzerland, pp. 183–202.

    Google Scholar 

  23. Jahnke, W., Florsheimer, A., Blommers, M. J., et al. (2003) Second-site NMR screening and linker design. Curr. Top. Med. Chem. 3, 69–80.

    Article  CAS  PubMed  Google Scholar 

  24. Wyss, D. F., McCoy, M. A. and Senior, M. M. (2002) NMR-based approaches for lead discovery. Curr. Opin. Drug. Discov. Devel. 5, 630–647.

    CAS  PubMed  Google Scholar 

  25. Villar, H. O., Yan, J. and Hansen, M. R. (2004) Using NMR for ligand discovery and optimization. Curr. Opin. Chem. Biol. 8, 387–391.

    Article  CAS  PubMed  Google Scholar 

  26. Pellecchia, M., Becattini, B., Crowell, K. J., et al. (2004) NMR-based techniques in the hit identification and optimisation processes. Expert Opin. Ther. Targets 8, 597–611.

    Article  CAS  PubMed  Google Scholar 

  27. Lepre, C. A., Peng, J., Fejzo, J., et al. (2002) Applications of SHAPES screening in drug discovery. Comb. Chem. High Throughput Screen 5, 583–590.

    CAS  PubMed  Google Scholar 

  28. Sun, C. and Hajduk, P. J. (2006) Nuclear magnetic resonance in target profiling and compound file enhancement. Curr. Opin. Drug Discov. Devel. 9, 463–470.

    CAS  PubMed  Google Scholar 

  29. Sun, C., Huth, J. R. and Hajduk, P. J. (2005) NMR in pharmacokinetic and pharmacodynamic profiling. Chembiochem 6, 1592–1600.

    Article  CAS  PubMed  Google Scholar 

  30. Holzgrabe, U., Wawer, I. and Diehl, B. (1999) NMR Spectroscopy in Drug Development and Analysis. Wiley-VCH, Weinheim.

    Book  Google Scholar 

  31. Craik, D. J. (1996) NMR in Drug Design. CRC, New York.

    Google Scholar 

  32. Hansdschumacher, R. E. and Armitage, I. M. (1989) NMR Methods for Elucidating Macromolecule-Ligand Interactions: An Approach to Drug Design. Pergamon Press, Oxford.

    Google Scholar 

  33. Shuker, S. B., Hajduk, P. J., Meadows, R. P. and Fesik, S. W. (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534.

    Article  CAS  PubMed  Google Scholar 

  34. Reid, D. G., MacLachlan, L. K., Edwards, A. J., Hubbard, J. A. and Sweeney, P. J. (1997) Introduction to the NMR of proteins. In: Protein NMR Techniques (Reid D. G., ed.). Humana Press, Totowa, NJ, pp. 1–28.

    Chapter  Google Scholar 

  35. Wishart, D. S., Sykes, B. D. and Richards, F. M. (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651.

    Article  CAS  PubMed  Google Scholar 

  36. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S. and Sykes, B. D. (1995) 1H, 13C and 15 N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J. Biomol. NMR 5, 67–81.

    Article  CAS  PubMed  Google Scholar 

  37. Karplus, M. (1963) Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 85, 2870–2871.

    Article  CAS  Google Scholar 

  38. Lautz, J., Kessler, H., Blaney, J. M., Scheek, R. M. and Van Gunsteren, W. F. (1989) Calculating three-dimensional molecular structure from atom-atom distance information: cyclosporin A. Int. J. Pept. Protein. Res. 33, 281–288.

    Article  CAS  PubMed  Google Scholar 

  39. Ottiger, M., Zerbe, O., Guntert, P. and Wuthrich, K. (1997) The NMR solution conformation of unligated human cyclophilin A. J. Mol. Biol. 272, 64–81.

    Article  CAS  PubMed  Google Scholar 

  40. Weber, C., Wider, G., von Freyberg, B., et al. (1991) The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution. Biochemistry 30,6563–6574.

    Article  CAS  PubMed  Google Scholar 

  41. Palmer, A. G. (2004) NMR Characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640.

    Article  CAS  PubMed  Google Scholar 

  42. O’Sullivan, D. B., Jones, C. E., Abdelraheim, S. R., et al. (2007) NMR characterization of the pH 4 beta-intermediate of the prion protein: the N-terminal half of the protein remains unstructured and retains a high degree of flexibility. Biochem. J. 401, 533–540.

    Article  PubMed  Google Scholar 

  43. Renisio, J. G., Perez, J., Czisch, M., et al. (2002) Solution structure and backbone dynamics of an antigen-free heavy chain variable domain (VHH) from Llama. Proteins 47, 546–555.

    Article  CAS  PubMed  Google Scholar 

  44. Feng, L., Orlando, R. and Prestegard, J. H. (2006) Amide proton back-exchange in deuterated peptides: applications to MS and NMR analyses. Anal. Chem. 78,6885–6892.

    Article  CAS  PubMed  Google Scholar 

  45. Morris, K. F., Gao, X. and Wong, T. C. (2004) The interactions of the HIV gp41 fusion peptides with zwitterionic membrane mimics determined by NMR spectroscopy. Biochim. Biophys. Acta 1667, 67–81.

    Article  CAS  PubMed  Google Scholar 

  46. D’Amelio, N., Bonvin, A. M., Czisch, M., Barker, P. and Kaptein, R. (2002) The C terminus of apocytochrome b562 undergoes fast motions and slow exchange among ordered conformations resembling the folded state. Biochemistry 41,5505–5514.

    Article  PubMed  Google Scholar 

  47. Liepinsh, E., Otting, G. and Wuthrich, K. (1992) NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. J. Biomol. NMR 2, 447–465.

    Article  CAS  PubMed  Google Scholar 

  48. Englander, S. W., Downer, N. W. and Teitelbaum, H. (1972) Hydrogen exchange. Annu. Rev. Biochem. 41, 903–924.

    Article  CAS  PubMed  Google Scholar 

  49. Claasen, B., Axmann, M., Meinecke, R. and Meyer, B. (2005) Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin α(IIb)β3 in native platelets than in liposomes. J. Am. Chem. Soc. 127, 916–919.

    Article  CAS  PubMed  Google Scholar 

  50. Meinecke, R. and Meyer, B. (2001) Determination of the binding specificity of an integral membrane protein by saturation transfer difference NMR: RGD peptide ligands binding to integrin alphaIIbbeta3. J. Med. Chem. 44, 3059–3065.

    Article  CAS  PubMed  Google Scholar 

  51. Kisselev, O. G., Kao, J., Ponder, J. W., Fann, Y. C., Gautam, N. and Marshall, G. R. (1998) Light-activated rhodopsin induces structural binding motif in G protein α subunit. Proc. Natl. Acad. Sci. 95, 4270–4275.

    Article  CAS  PubMed  Google Scholar 

  52. Petros, A. M., Dinges, J., Augeri, D. J., et al. (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J. Med. Chem. 49, 656–663.

    Article  CAS  PubMed  Google Scholar 

  53. Basus, V. J. (1989) Proton nuclear magnetic resonance assignments. Methods Enzymol. 177, 132–149.

    Article  CAS  PubMed  Google Scholar 

  54. Seavey, B. R., Farr, E. A., Westler, W. M. and Markley, J. L. (1991) A relational database for sequence-specific protein NMR data. J. Biomol. NMR 1, 217–236.

    Article  CAS  PubMed  Google Scholar 

  55. Gayler, K., Sandall, D., Greening, D., et al. (2005) Molecular prospecting for drugs from the sea. Isolating therapeutic peptides and proteins from cone snail venom. IEEE Eng. Med. Biol. Mag. 24, 79–84.

    Article  PubMed  Google Scholar 

  56. Livett, B. G., Gayler, K. R. and Khalil, Z. (2004) Drugs from the sea: conopeptides as potential therapeutics. Curr. Med. Chem. 11, 1715–1723.

    CAS  PubMed  Google Scholar 

  57. Sandall, D. W., Satkunanathan, N., Keays, D. A., et al. (2003) A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42,6904–6911.

    Article  CAS  PubMed  Google Scholar 

  58. Clark, R. J., Fischer, H., Nevin, S. T., Adams, D. J. and Craik, D. J. (2006) The synthesis, structural characterization, and receptor specificity of the α-conotoxin Vc1.1. J. Biol. Chem. 281, 23254–23263.

    Article  CAS  PubMed  Google Scholar 

  59. Hajduk, P. J., Augeri, D. J., Mack, J., et al. (2000) NMR-based screening of proteins containing 13C-labeled methyl groups. J. Am. Chem. Soc. 122, 7898–7904.

    Article  CAS  Google Scholar 

  60. Bothner-By, A. A., Stephens, R. L., Lee, J., Warren, C. D. and Jeanloz, R. W. (1984) Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 106, 811–813.

    Article  CAS  Google Scholar 

  61. Johnson, M. A. and Pinto, B. M. (2004) NMR spectroscopic and molecular modeling studies of protein-carbohydrate and protein-peptide interactions. Carbohydr. Res. 339, 907–928.

    Article  CAS  PubMed  Google Scholar 

  62. Johnson, M. A., Rotondo, A. and Pinto, B. M. (2002) NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide. Biochemistry 41,2149–2157.

    Article  CAS  PubMed  Google Scholar 

  63. Mayer, M. and Meyer, B. (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chemie Int. Ed. 38, 1784–1788.

    Article  CAS  Google Scholar 

  64. Mayer, M. and Meyer, B. (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117.

    Article  CAS  PubMed  Google Scholar 

  65. Vold, R. L., Waugh, J. S., Klein, M. P. and Phelps, D. E. (1968) Measurement of spin relaxation in complex systems. J. Chem. Phys. 48, 3831–3832.

    Article  CAS  Google Scholar 

  66. Carr, H. Y. and Purcell, E. M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical Rev. 94, 630–638.

    Article  CAS  Google Scholar 

  67. Meiboom, S. and Gill, D. (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691.

    Article  CAS  Google Scholar 

  68. Stejskal, E. O. and Tanner, J. E. (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292.

    Article  CAS  Google Scholar 

  69. Foster, M. P., McElroy, C. A. and Amero, C. D. (2007) Solution NMR of large molecules and assemblies. Biochemistry 46, 331–340.

    Article  CAS  PubMed  Google Scholar 

  70. Keeler, C., Dannies, P. S. and Hodsdon, M. E. (2003) The tertiary structure and backbone dynamics of human prolactin. J. Mol. Biol. 328, 1105–1121.

    Article  CAS  PubMed  Google Scholar 

  71. Grace, C. R. R. and Riek, R. (2003) Pseudomultidimensional NMR by spin-state selective off-resonance decoupling. J. Am. Chem. Soc. 125, 16104–16113.

    Article  CAS  PubMed  Google Scholar 

  72. Pervushin, K., Riek, R., Wider, G. and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. 94, 12366–12371.

    Article  CAS  PubMed  Google Scholar 

  73. Arimoto, R., Kisselev, O. G., Makara, G. M. and Marshall, G. R. (2001) Rhodopsin-transducin interface: studies with conformationally constrained peptides. Biophys. J. 81, 3285–3293.

    Article  CAS  PubMed  Google Scholar 

  74. Tugarinov, V., Zvi, A., Levy, R. and Anglister, J. (1999) A cis proline turn linking two beta-hairpin strands in the solution structure of an antibody-bound HIV-1IIIB V3 peptide. Nat. Struct. Biol. 6, 331–335.

    Article  CAS  PubMed  Google Scholar 

  75. Meyer, B., Weimar, T. and Peters, T. (1997) Screening mixtures for biological activity by NMR. Eur. J. Biochem. 246, 705–709.

    Article  CAS  PubMed  Google Scholar 

  76. Mayer, M. and Meyer, B. (2000) Mapping the active site of angiotensin-converting enzyme by transferred NOE spectroscopy. J. Med. Chem. 43, 2093–2099.

    Article  CAS  PubMed  Google Scholar 

  77. D’Souza, S. E., Ginsberg, M. H. and Plow, E. F. (1991) Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem. Sci. 16, 246–250.

    Article  PubMed  Google Scholar 

  78. Aumailley, M., Gurrath, M., Muller, G., Calvete, J., Timpl, R. and Kessler, H. (1991) Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett. 291, 50–54.

    Article  CAS  PubMed  Google Scholar 

  79. Chatterjee, C. and Mukhopadhyay, C. (2005) Interaction and structural study of kinin peptide bradykinin and ganglioside monosialylated 1 micelle. Biopolymers 78,197–205.

    Article  CAS  PubMed  Google Scholar 

  80. Stuart, A. C., Gottesman, M. E. and Palmer, A. G., 3rd (2003) The N-terminus is unstructured, but not dynamically disordered, in the complex between HK022 Nun protein and λ-phage BoxB RNA hairpin. FEBS Lett. 553, 95–98.

    Article  CAS  PubMed  Google Scholar 

  81. Stamos, J., Eigenbrot, C., Nakamura, G. R., et al. (2004) Convergent recognition of the IgE binding site on the high-affinity IgE receptor. Structure 12, 1289–1301.

    Article  CAS  PubMed  Google Scholar 

  82. Garman, S. C., Wurzburg, B. A., Tarchevskaya, S. S., Kinet, J. P. and Jardetzky, T. S. (2000) Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI α. Nature 406, 259–266.

    Article  CAS  PubMed  Google Scholar 

  83. Nakamura, G. R., Reynolds, M. E., Chen, Y. M., Starovasnik, M. A. and Lowman, H. B. (2002) Stable “zeta” peptides that act as potent antagonists of the high-affinity IgE receptor. Proc. Natl. Acad. Sci. USA 99, 1303–1308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Westermann, JC., Craik, D.J. (2008). NMR in Peptide Drug Development. In: Otvos, L. (eds) Peptide-Based Drug Design. Methods In Molecular Biology™, vol 494. Humana Press. https://doi.org/10.1007/978-1-59745-419-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-419-3_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-990-1

  • Online ISBN: 978-1-59745-419-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics