Skip to main content

Analysis of Aβ Interactions Using ProteinChip Technology

  • Protocol
Peptide-Based Drug Design

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 494))

Summary

Aβ peptides are now acknowledged to play a central role in the pathogenesis of Alzheimer’s disease. Their generation results from the sequential cleavage of amyloid precursor protein by β and γ secretases. The resulting peptide fragments impart toxicity via their ability to form soluble oligomers and bind to cell membranes. In this chapter we describe the use of ProteinChip ® technology to study the physicochemical behaviour of Aβ and its mechanisms of toxicity. These include analyzing (1) Aβ processing and quantitation of peptide fragments, (2) Aβ aggregation and the quantitation of oligomers, and (3) Aβ–lipid interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gorevic, P.D., Goni, F., Pons-Estel, B., Alvarez, F., Peress, N.S. and Frangione, B. (1986) Isolation and partial characterization of neurofibrillary tangles and amyloid plaque core in Alzheimer’s disease: immunohistological studies. J. Neuropathol. Exp. Neurol. 45, 647–664.

    Article  CAS  PubMed  Google Scholar 

  2. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L. and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82, 4245–4249.

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe, D.J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.

    CAS  PubMed  Google Scholar 

  4. Sisodia, S.S. and St George-Hyslop, P.H. (2002) Gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat. Rev. Neurosci. 3,281–290.

    Article  CAS  PubMed  Google Scholar 

  5. Sisodia, S.S., Koo, E.H., Beyreuther, K., Unterbeck, A. and Price, D.L. (1990) Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248, 492–495.

    Article  CAS  PubMed  Google Scholar 

  6. Haass, C., Hung, A.Y., Schlossmacher, M.G., Teplow, D.B. and Selkoe, D.J. (1993) beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. Biol. Chem. 268, 3021–3024.

    CAS  PubMed  Google Scholar 

  7. Jarrett, J.T., Berger, E.P. and Lansbury, Jr. P.T. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697.

    Article  CAS  PubMed  Google Scholar 

  8. Lesne, S., Koh, M.T., Kotilinek, L., et al. (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440, 352–357.

    Article  CAS  PubMed  Google Scholar 

  9. Harper, J.D., Wong, S.S., Lieber, C.M. and Lansbury, P.T. (1997) Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125.

    Article  CAS  PubMed  Google Scholar 

  10. Relini, A., Torrassa, S., Rolandi, R., et al. (2004). Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J. Mol. Biol. 338,943–957.

    Article  CAS  PubMed  Google Scholar 

  11. Hartley, D.M., Walsh, D.M., Ye, C.P., et al. (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons . J. Neurosci. 19, 8876–8884.

    CAS  PubMed  Google Scholar 

  12. Behl, C., Davis, J.B., Lesley, R. and Schubert, D. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817–827.

    Article  CAS  PubMed  Google Scholar 

  13. Ambroggio, E.E., Kim, D.H., Separovic, F., et al. (2005) Surface behavior and lipid interaction of Alzheimer beta-amyloid peptide 1–42: a membrane-disrupting peptide. Biophys. J. 88, 2706–2713.

    Article  CAS  PubMed  Google Scholar 

  14. Mattson, M.P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I. and Rydel, R.E. (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    CAS  PubMed  Google Scholar 

  15. Curtain, C.C., Ali, F., Volitakis, I., et al. (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276,20466–20473.

    Article  CAS  PubMed  Google Scholar 

  16. Dong, J., Atwood, C.S., Anderson, V.E., et al. (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42, 2768–2773.

    Article  CAS  PubMed  Google Scholar 

  17. Pike, C.J., Walencewicz-Wasserman, A.J., Kosmoski, J., Cribbs, D.H., Glabe, C.G. and Cotman, C.W. (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J. Neurochem. 64, 253–265.

    Article  CAS  PubMed  Google Scholar 

  18. Arispe, N., Rojas, E. and Pollard, H.B. (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc. Natl. Acad. Sci. USA 90, 567–571.

    Article  CAS  PubMed  Google Scholar 

  19. Guo, Q., Fu, W., Xie, J., et al. (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat. Med. 4, 957–962.

    Article  CAS  PubMed  Google Scholar 

  20. Wiesner, A. (2004) Detection of tumor markers with ProteinChip technology. Curr. Pharm. Biotechnol. 5, 45–67.

    Article  CAS  PubMed  Google Scholar 

  21. Austen, B.M., Frears, E.R. and Davies, H. (2000) The use of seldi proteinchip arrays to monitor production of Alzheimer’s betaamyloid in transfected cells. J. Pept. Sci. 6, 459–469.

    Article  CAS  PubMed  Google Scholar 

  22. Bradbury, L.E., LeBlanc, J.F. and McCarthy, D.B. (2004) ProteinChip array-based amyloid beta assays. Methods Mol. Biol. 264, 245–257.

    CAS  PubMed  Google Scholar 

  23. Maddalena, A.S., Papassotiropoulos, A., Gonzalez-Agosti, C., et al. (2004) Cerebrospinal fluid profile of amyloid beta peptides in patients with Alzheimer’s disease determined by protein biochip technology. Neurodegener. Dis. 1,231–235.

    Article  CAS  PubMed  Google Scholar 

  24. Bitan, G., Lomakin, A. and Teplow, D. B. (2001) Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem. 276, 35176–35184.

    Article  CAS  PubMed  Google Scholar 

  25. Pirttilä, T., Kim, K.S., Mehta, P.D., Frey, H. and Wisniewski, H.M. (1994) Soluble amyloid β-protein in the cerebrospinal fluid from patients with Alzheimer’s disease, vascular dementia and controls. J. Neurol. Sci. 127, 90–95.

    Article  PubMed  Google Scholar 

  26. Ida, N., Hartmann, T., Pantel, J., et al. (1996) Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J. Biol. Chem. 271, 22908–22914.

    Article  CAS  PubMed  Google Scholar 

  27. Jensen, M., Hartmann, T., Engvall, B., et al. (2000) Quantification of Alzheimer amyloid beta peptides ending at residues 40 and 42 by novel ELISA systems. Mol. Med. 6, 291–302.

    CAS  PubMed  Google Scholar 

  28. Barelli, H., Lebeau, A., Vizzavona, J., et al. (1997) Characterization of new polyclonal antibodies specific for 40 and 42 amino acid-long amyloid beta peptides: their use to examine the cell biology of presenilins and the immunohistochemistry of sporadic Alzheimer’s disease and cerebral amyloid angiopathy cases. Mol. Med. 3, 695–707.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Giannakis, E., Hung, LW., Camacaro, K.P., Smith, D.P., Barnham, K.J., Wade, J.D. (2008). Analysis of Aβ Interactions Using ProteinChip Technology. In: Otvos, L. (eds) Peptide-Based Drug Design. Methods In Molecular Biology™, vol 494. Humana Press. https://doi.org/10.1007/978-1-59745-419-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-419-3_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-990-1

  • Online ISBN: 978-1-59745-419-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics