Skip to main content

Strategies for the Discovery, Isolation, and Characterization of Natural Bioactive Peptides from the Immune System of Invertebrates

  • Protocol
Peptide-Based Drug Design

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 494))

Summary

Intensive research efforts for developing new anti-infectious drugs for human health rely mostly on technological advancements in high-throughput screening of combinatorial chemical libraries and/or natural libraries generated from animal/plant extracts. However, nature has done a fascinating job engineering its own mutational program through evolution. This results in an incredible diversity of natural bioactive molecules that may represent a starting matrix for developing new generations of therapeutics of commercial promise to control infectious diseases. Among the natural bioactive molecules, peptides are opening promising perspectives. The search for novel bioactive peptides for therapeutic development relies mainly on a conventional approach driven by a desired biological activity followed by the purification and structural characterization of the bioactive molecule. Nevertheless, this strategy requires large quantities of biological material for activity screening and is thus restrained to animal species of large size or that are widely distributed.

During the past 10 years, thanks to the technological improvements of mass spectro-metry (MS) and liquid chromatography, highly sensitive approaches have been developed and integrated into the drug-discovery process. We have used several of these sensitive biochemical technologies to isolate and characterize defense/immune peptides from tiny invertebrates (essentially arthropods) and to limit investigations on a restricted number of individuals. These defense/immune peptides, which are mostly cationic molecules with a molecular mass often below 10 kDa, are the natural armamentarium of the living organisms, and they represent good starting matrices for optimization prior their development as future anti-infectious therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, L., and Falla, T.J. (2006) Antimicrobial peptides: therapeutic potential. Expert Opin. Pharmacother. 7(6), 653–663.

    Article  CAS  PubMed  Google Scholar 

  2. Hancock, R.E., and Sahl, H.G. (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24(12), 1551–1557.

    Article  CAS  PubMed  Google Scholar 

  3. Pereira, H.A. (2006) Novel therapies based on cationic antimicrobial peptides. Curr. Pharm. Biotechnol. 7(4), 229–234.

    Article  CAS  PubMed  Google Scholar 

  4. McPhee, J.B., and Hancock, R.E. (2005) Function and therapeutic potential of host defence peptides. J. Pept. Sci. 11(11), 677–687.

    Article  CAS  PubMed  Google Scholar 

  5. Riley, M.A., and Wertz, J.E. (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84(5–6), 357–364.

    Article  CAS  PubMed  Google Scholar 

  6. Guder, A., Wiedemann, I., and Sahl, H.G. (2000) Posttranslationally modified bacteriocins—the lantibiotics. Biopolymers 55, 62–73.

    Article  CAS  PubMed  Google Scholar 

  7. Jenssen, H., Hamill, P., and Hancock, R.E. (2006) Peptide antimicrobial agents. Clin. Microbiol. Rev. 19(3), 491–511.

    Article  CAS  PubMed  Google Scholar 

  8. Castro, M.S., and Fontes, W. (2005) Plant defense and antimicrobial peptides. Protein Pept. Lett. 12(1), 13–18.

    CAS  PubMed  Google Scholar 

  9. Bulet, P., Stöcklin, R., and Menin, L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169–184.

    Article  CAS  PubMed  Google Scholar 

  10. Sitaram, N., and Nagaraj, R. (2002) Host-defense antimicrobial peptides: importance of structure and activity. Curr. Pharm. Des. 8(9), 727–742.

    Article  CAS  PubMed  Google Scholar 

  11. Beisswenger, C., and Bals, R. (2005) Functions of antimicrobial peptides in host defense and immunity. Curr. Protein Pept. Sci. 6(3), 255–264.

    Article  CAS  PubMed  Google Scholar 

  12. Hancock, R.E., Brown, K.L., and Mookherjee, N. (2006) Host defence peptides from invertebrates—emerging antimicrobial strategies. Immunobiology 211(4), 315–322.

    Article  CAS  PubMed  Google Scholar 

  13. Bachère, E., Gueguen, Y., Gonzalez, M., de Lorgeril, J., Garnier, J., and Romestand, B. (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol. Rev. 198, 149–168.

    Article  Google Scholar 

  14. Imler, J.L., and Bulet, P. (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy 86, 1–21.

    Article  CAS  PubMed  Google Scholar 

  15. Bulet, P., and Stöcklin, R.(2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12(1), 3–11.

    Article  CAS  PubMed  Google Scholar 

  16. Lemaitre, B., and Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743.

    Article  CAS  PubMed  Google Scholar 

  17. Boulanger, N., Munks, R.J., Hamilton, J.V., et al. (2002) Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J. Biol. Chem. 277(51), 49921–49926.

    Article  CAS  PubMed  Google Scholar 

  18. Kuhn-Nentwig, L. (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol. Life Sci. 60(12), 2651–2668.

    Article  CAS  PubMed  Google Scholar 

  19. Uttenweiler-Joseph, S., Moniatte, M., Lagueux, M., Van Dorsselaer, A., Hoffmann, J.A., and Bulet, P. (1998) Differential display of peptides induced during the immune response of Drosophila: a matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proc. Natl. Acad. Sci. USA 95(19),11342–11347.

    Article  CAS  PubMed  Google Scholar 

  20. Levy, F., Rabel, D., Charlet, M., Bulet, P., Hoffmann, J.A., and Ehret-Sabatier, L. (2004) Peptidomic and proteomic analyses of the systemic immune response of Drosophila. Biochimie 86(9–10), 607–616.

    Article  CAS  PubMed  Google Scholar 

  21. Chernysh, S., Kim, S.I., Bekker, G., et al. (2002) Antiviral and antitumoral peptides from insects. Proc. Natl. Acad. Sci. USA 99(20), 12628–12632.

    Article  CAS  PubMed  Google Scholar 

  22. Hetru, C., Bulet, P. (1997) Strategies for the isolation and characterization of antimicrobial peptides of invertebrates, in Antimicrobial Peptide Protocols (Shafer, W.M., ed.), Humana Press, Totowa, NJ, pp. 35–49.

    Google Scholar 

  23. Boulanger, N., Ehret-Sabatier, L., Brun, R., Zachary, D., Bulet, P., and Imler, J.L. (2001) Immune response of Drosophila melanogaster to infection with the flagellate parasite Crithidia spp. Insect Biochem. Mol. Biol. 31, 129–137.

    Article  CAS  PubMed  Google Scholar 

  24. Boulanger, N., Lowenberger, C., Volf, P., et al. (2004) Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect. Immun. 72(12), 7140–7146.

    Article  CAS  PubMed  Google Scholar 

  25. Favreau, P., Menin, L., Michalet, S., et al. (2006) Mass spectrometry strategies for venom mapping and peptide sequencing from crude venoms: case applications with single arthropod specimen. Toxicon 47, 676–687.

    Article  CAS  PubMed  Google Scholar 

  26. Bulet, P., and Uttenweiler-Joseph, S. (2000) A MALDI-TOF mass spectrometry approach to investigate the defense reactions in Drosophila melanogaster, an insect model for the study of innate immunity, in RM Kamp, D Kyriakidis, Th Choli-Papadopoulos, ed. Springer Proteome and Protein Analysis (Kamp, R.M., Kyriakidis, D., and Choli-Papadopoulos, T., eds.), Springer-Verlag, Berlin, pp. 157–174.

    Google Scholar 

  27. Carte, N., Cavusoglu, N., Leize, E., Van Dorsselaer, A., Charlet, M., and Bulet, P. (2001) De novo sequencing by nano-electrospray multiple-stage tandem mass spectrometry of an immune-induced peptide of Drosophila melanogaster. Eur. J. Mass Spectrom. 7(4), 399–408.

    Article  CAS  Google Scholar 

  28. Favreau, P., Cheneval, O., Menin, L., et al. (2007) The venom of the snake genus Atheris contains a new class of peptides with clusters of histidine and gylcine residues. Rapid Commun. Mass Spectrom. 21(3), 406–412.

    Article  CAS  PubMed  Google Scholar 

  29. Destoumieux, D., Munoz, M., Cosseau, C., et al. (2000) Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J. Cell Sci. 113, 461–469.

    CAS  PubMed  Google Scholar 

  30. Rabel, D., Charlet, M., Ehret-Sabatier, L., et al. (2004) Primary structure and in vitro antibacterial properties of the Drosophila melanogaster attacin C pro-domain. J. Biol. Chem. 279(15), 14853–14859.

    Article  CAS  PubMed  Google Scholar 

  31. Boulanger, N., Munks, R.J.L., Hamilton, J.V., et al. (2002) Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J. Biol. Chem. 32(4), 369–375.

    CAS  Google Scholar 

  32. Vizioli, J., Richman, A.M., Uttenweiler-Joseph, S., Blass, C., and Bulet, P. (2001) The defensin of the malaria vector mosquito Anopheles gambiae: antimicrobial activities and expression in adult mosquitoes. Insect Biochem. Mol. Biol. 31,241–248.

    Article  CAS  PubMed  Google Scholar 

  33. Lamberty, M., Zachary, D., Lanot, R., et al. (2001) Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J. Biol. Chem. 276(6), 4085–4092.

    Article  CAS  PubMed  Google Scholar 

  34. Royet, J., Reichhart, J.M., and Hoffmann, J.A. (2005) Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17, 11–17.

    Article  CAS  PubMed  Google Scholar 

  35. Marr, A.K., Gooderham, W.J., and Hancock, R.E. (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 6(5),468–472.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bulet, P. (2008). Strategies for the Discovery, Isolation, and Characterization of Natural Bioactive Peptides from the Immune System of Invertebrates. In: Otvos, L. (eds) Peptide-Based Drug Design. Methods In Molecular Biology™, vol 494. Humana Press. https://doi.org/10.1007/978-1-59745-419-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-419-3_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-990-1

  • Online ISBN: 978-1-59745-419-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics