Skip to main content

Experimental Setups and Considerations to Study Microbial Interactions

  • Protocol
Functional Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 484))

  • 3092 Accesses

Abstract

Within ecosystems microorganisms coexist and interact. Knowledge of these interactions is of great importance in the fields of ecology, food production, and medicine. Such interactions often involve the synthesis of antibiotic secondary metabolites. Different kinds of s molecules or direct contacts are other forms of microbial interactions. Recently, modern molecular methods such as microarrays and proteomics have been employed to investigate such interactions. In this chapter, the use of proteomics for studies of microbial interactions is discussed. The choice of experimental setup is dependent on the aims of the specific study. One aspect of competition between microbes can be simulated by treatment of one microbe with antibiotics produced by a competing microbe. A more complicated approach involves cocultivation of the competitors, but in order to reveal species-specific protein patterns it is advisable to keep the organisms separated. Alternative techniques are to monitor alterations in the proteomes between the wild-type and mutant strains. The mutant can be either natural or created using random or targeted mutagenesis. Generally, a proteomic study will reveal proteins with both expected and surprising changes in abundance upon competition, but also previously unknown proteins are likely to be identified. A proteomic approach is usually insufficient to obtain a complete data set describing microbial interactions. Therefore, it is essential to follow up identification of proteins with changed abundance by, e.g., the creation of knockout strains for phenotypic analyses. Despite the limitations, proteomics is a useful method, and an important complement to other approaches for studies of microbial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Khironomos, J. N., Lee, H., et al. (2004) Methods of studying soil microbial diversity. J Microbiol. Met. 58, 169–188.

    Article  CAS  Google Scholar 

  2. Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837–846.

    Article  PubMed  CAS  Google Scholar 

  3. Cowen L. E. (2001) Predicting the emergence of resistance to antifungal drugs. FEMS Microbiol. Let. 204, 1–7.

    Article  CAS  Google Scholar 

  4. Lipsitch, M. (2001) The rise and fall of antimicrobial resistance. Trends Microbiol. 9, 438–444.

    Article  PubMed  CAS  Google Scholar 

  5. Maplestone R. A., Stone, M. J., and Williams, D. H. (1992) The evolutionary role of secondary metabolites—a review. Gene 115, 151–157.

    Article  PubMed  CAS  Google Scholar 

  6. Stone, M. J. and Williams D. H. (1992) On the evolution of functional secondary metabolites (natural-products). Mol. Microbiol. 6, 29–34.

    Article  PubMed  CAS  Google Scholar 

  7. Gottlieb, D. (1976) The production and role of antibiotics in soli. J. Antibiot. 29, 987–1000.

    PubMed  CAS  Google Scholar 

  8. Goh, E. B., Yim, G., Tsui, W., McClure, J., Surette, M. G., and Davies, J. (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA 99, 17025–17030.

    Article  PubMed  CAS  Google Scholar 

  9. Wargo, M. J. and Hogan, D. A. (2006) Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr. Opin. Microbiol. 9, 359–364.

    Article  PubMed  CAS  Google Scholar 

  10. Reid, G. and Burton, J. (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. Microb. Infect. 4, 319–324.

    Article  Google Scholar 

  11. Gerhardson, B. (2002) Biological substitutes for pesticides. Trends Biotech. 20, 338–343.

    Article  CAS  Google Scholar 

  12. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nature Rev. Microbiol 2, 43–56.

    Article  CAS  Google Scholar 

  13. Lindgren, S. E. and Dobrogosz, W. J. (1990) Antagonistic activities of lactic-acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 87, 149–163.

    Article  CAS  Google Scholar 

  14. Vinas, I., Usall, J., Teixido, N., and Sanchis, V. (1998) Biological control of major postharvest pathogens on apple with Candida sake. Int. Food Microbiol. 40, 9–16.

    Article  CAS  Google Scholar 

  15. Passoth, V., Fredlund, E., Druvefors, U. Ä., and Schnurer, J. (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res. 6, 3–13.

    Article  PubMed  CAS  Google Scholar 

  16. Feng, X. M., Eriksson, A. R. B., and Schnurer, J. (2005) Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation. Int. J. Food Microbiol. 104, 249–256.

    Article  PubMed  CAS  Google Scholar 

  17. Garbaye, J. (1994) Helper bacteria—a new dimension to the mycorrhizal symbiosis. New Phyt. 128, 197–210.

    Article  Google Scholar 

  18. Miller, M. B. and Bassler, B. L. (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199.

    Article  PubMed  CAS  Google Scholar 

  19. Riedel, K., Arevalo-Ferro, C., Reil, G., Gorg, A., Lottspeich, F., and Eberl, L. (2003) Analysis of the quorum-sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics. Electrophoresis 24, 740–750.

    Article  PubMed  CAS  Google Scholar 

  20. Hecker, M., Engelmann, S., and Cordwell, S. J. (2003) Proteomics of Staphylococcus aureus—current state and future challenges. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 787, 179–195

    Article  PubMed  CAS  Google Scholar 

  21. Finquelievich, J. L. and Odds, F. C., Queiroz-Telles, F., and Wheat L. J. (2000) New advances in antifungal treatment. Med. Mycol. 8, 317–322.

    Google Scholar 

  22. Bruneau, J. M., Maillet, I., Tagat, E., Legrand, R., Supatto, F., Fudali, C., et al. (2003) Drug induced proteome changes in Candida albicans: comparison of the effect of beta(1,3) glucan synthase, inhibitors and two triazoles, fluconazole and itraconazole. Proteomics 3, 325–336.

    Article  PubMed  CAS  Google Scholar 

  23. Grinyer, J., Hunt, S., McKay, M., Herbert, B. R., and Nevalainen, H. (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr. Genet. 47, 381–388.

    Article  PubMed  CAS  Google Scholar 

  24. Ström, K., Schnürer, J., and Melin, P. (2005) Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiol. Lett. 246, 119–124.

    Article  PubMed  CAS  Google Scholar 

  25. De Backer, M. D., de Hoogt, R. A., Froyen, G., Odds, F. C., Simons, F., Contreras, R., et al. (2000) Single allele knock-out of Candida albicans CGT1 leads to unexpected resistance to hygromycin B and elevated temperature. Microbiology 146, 353–365.

    PubMed  Google Scholar 

  26. De Angelis, M., Bini, L., Pallini, V., Cocconcelli, P. S., and Gobbetti, M. (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147, 1863–1873.

    PubMed  Google Scholar 

  27. Cordwell, S. J., Larsen, M. R., Cole, R. T., and Walsh, B. J. (2002), Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology 148, 2765–2781.

    PubMed  CAS  Google Scholar 

  28. Cash, P., Argo, E., Ford, L., Lawrie, L., and McKenzie, H. (1999) A proteomic analysis of erythromycin resistance in Streptococcus pneumoniae. Electrophoresis 20, 2259–2268.

    Article  PubMed  CAS  Google Scholar 

  29. Yun, S. H., Kim, Y. H., Joo, E. J., Choi, J. S., Sohn, J. H., and Kim, S. (2006) Proteome analysis of cellular response of Pseudomonas putida KT2440 to tetracycline stress. Curr. Microbiol. 53, 95–101.

    Article  PubMed  CAS  Google Scholar 

  30. Pardo, M., Ward, M., Bains, S., Molina, M., Blackstock, W., Gil, C., et al. (2000) A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis 21, 3396–3410.

    Article  PubMed  CAS  Google Scholar 

  31. Navarre, C., Degand, H., Bennett, K. L., Crawford, J. S., Mortz, E., and Boutry, M. (2002) Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae. Proteomics 2, 1706–1714.

    Article  PubMed  CAS  Google Scholar 

  32. Zischka, H., Weber, G., Weber, P. J. A., Posch, A., Braun, R. J., Buhringer, D., Schneider, U., Nissum, M., Meitinger, T., Ueffing, M. and Eckerskorn, C. (2003) Improved proteome analysis of Saccharomyces cerevisiae mitochondria by free-flow electrophoresis. Proteomics 3, 906–916.

    Article  PubMed  CAS  Google Scholar 

  33. Harry, J. L., Wilkins, M. R., Herbert, B. R., Packer, N. H., Gooley, A. A., and Williams, K. L. (2000) Proteomics: Capacity versus utility. Electrophoresis 21, 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  34. Bowman, E. J., Siebers, A., and Altendorf, K. (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. USA 85, 7972–7976.

    Article  PubMed  CAS  Google Scholar 

  35. Melin, P., Schnürer, J., and Wagner, E. G. H. (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol. Genet. Genom. 267, 695–702.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Melin, P. (2008). Experimental Setups and Considerations to Study Microbial Interactions. In: Thompson, J.D., Ueffing, M., Schaeffer-Reiss, C. (eds) Functional Proteomics. Methods in Molecular Biology, vol 484. Humana Press. https://doi.org/10.1007/978-1-59745-398-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-398-1_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-971-0

  • Online ISBN: 978-1-59745-398-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics