Skip to main content

Assembly of Immature HIV-1 Capsids Using a Cell-Free System

  • Protocol
HIV Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 485))

Abstract

For many years it has been known that viral capsid proteins are capable of self-assembly, but increasing evidence over the past decade indicates that in cells HIV-1 capsid assembly occurs via a complex but transient series of steps requiring multiple viral–host interactions. To better understand the biochemistry of HIV assembly, our group established a cell-free system that faithfully reconstitutes HIV-1 Gag synthesis and post-translational events of capsid assembly using cellular extracts, albeit more slowly and less efficiently. This system allowed initial identification of interactions that occur very transiently in cells but can be tracked in the cell-free system. Analysis of the cell-free system revealed that Gag progresses sequentially through a step-wise, energy-dependent series of assembly intermediates containing cellular proteins. One of these cellular proteins, the ATPase ABCE1, has been shown to play a critical role in the assembly process. The existence of this energy-dependent assembly pathway was subsequently confirmed in cellular systems, further validating the cell-free HIV-1 capsid assembly system as an excellent tool for identifying mechanisms underlying HIV-1 capsid formation. Here we describe how to assemble immature HIV-1 capsids in a cell-free system and separate assembly intermediates by velocity sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Briggs J. A., Simon M. N., Gross I, et al. (2004) The stoichiometry of Gag protein in HIV–1. Nat Struct Mol Biol 11, 672–675.

    Article  CAS  PubMed  Google Scholar 

  2. Bryant M., Ratner L. (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA 87, 523–527.

    Article  CAS  PubMed  Google Scholar 

  3. Gheysen D., Jacobs E., de Foresta F., et al. (1989) Assembly and release of HIV-1 precursor Pr55gag virus–like particles from recombinant baculovirus – infected insect cells. Cell 59, 103–112.

    Article  CAS  PubMed  Google Scholar 

  4. Gottlinger H. G., Sodroski J. G., Haseltine W. A. (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86, 5781–5785.

    Article  CAS  PubMed  Google Scholar 

  5. Klein K., Reed J. C., Lingappa J. R. (2007) Intracellular destinies: degradation, targeting, assembly, and endocytosis of HIV Gag. AIDS Rev 9, 150–161.

    PubMed  Google Scholar 

  6. Campbell S., Rein A. (1999) In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J Virol 73, 2270–2279.

    CAS  PubMed  Google Scholar 

  7. Lingappa J. R., Hill R. L., Wong M. L., et al. 1997) A multistep, ATP-dependent pathway for assembly of human immunodeficiency virus capsids in a cell – free system. J Cell Biol 136, 567–581.

    Article  CAS  PubMed  Google Scholar 

  8. Zimmerman C., Klein K. C., Kiser P. K., et al. (2002) Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415, 88–92.

    Article  CAS  PubMed  Google Scholar 

  9. Dooher J. E., Lingappa J. R. (2004) Conservation of a step-wise, energy-sensitive pathway involving HP68 for assembly of primate lentiviral capsids in cells. J Virol 78, 1645–56.

    Article  CAS  PubMed  Google Scholar 

  10. Dooher J. E., Schneider B. L., Reed J. C., et al. (2007) Host ABCE1 is at plasma membrane HIV assembly sites and its dissociation from Gag is linked to subsequent events of virus production. Traffic 8, 195–211.

    Article  CAS  PubMed  Google Scholar 

  11. Lingappa J. R., Newman M. A., Klein K. C., et al. (2005) Comparing capsid assembly of primate lentiviruses and hepatitis B virus using cell-free systems. Virology 333, 114–123.

    Article  CAS  PubMed  Google Scholar 

  12. Singh A. R., Hill R. L., Lingappa J. R. (2001) Effect of mutations in Gag on assembly of immature human immunodeficiency virus type 1 capsids in a cell-free system. Virology 279, 257–270.

    Article  CAS  PubMed  Google Scholar 

  13. Dooher J. E., Lingappa J. R. (2004) Cell-free capsid assembly of primate lentiviruses from three different lineages. J Med Primatol 33, 272–280.

    Article  PubMed  Google Scholar 

  14. Lingappa J. R., Martin R. L., Wong M. L., et al. (1994) A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle. J Cell Biol 125, 99–111.

    Article  CAS  PubMed  Google Scholar 

  15. Klein K. C., Dellos S. R., Lingappa J. R. (2005) Identification of residues in the hepatitis C virus core protein that are critical for capsid assembly in a cell-free system. J Virol 79, 6814–6826.

    Article  CAS  PubMed  Google Scholar 

  16. Klein K. C., Polyak S. J., Lingappa J. R. (2004) Unique features of Hepatitis C Virus capsid formation revealed by de novo cell-free assembly. J Virol 78, 9257–9269.

    Article  CAS  PubMed  Google Scholar 

  17. Erickson A. H., Blobel G. (1983) Cell-free translation of messenger RNA in a wheat germ system. Methods Enzymol 96, 38–50.

    Article  CAS  PubMed  Google Scholar 

  18. Melton D. A., Krieg P. A., Rebagliati M. R., et al. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12, 7035–7056.

    Article  CAS  PubMed  Google Scholar 

  19. Spearman P., Ratner L. (1996) Human immunodeficiency virus type 1 capsid formation in reticulocyte lysates. J Virol 70, 8187–8194.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lingappa, J.R., Thielen, B.K. (2009). Assembly of Immature HIV-1 Capsids Using a Cell-Free System. In: Prasad, V.R., Kalpana, G.V. (eds) HIV Protocols. Methods In Molecular Biology™, vol 485. Humana Press. https://doi.org/10.1007/978-1-59745-170-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-170-3_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-859-1

  • Online ISBN: 978-1-59745-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics