Skip to main content

Cross-Linked Enzyme Aggregates

  • Protocol
Immobilization of Enzymes and Cells

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 22))

Abstract

The economic viability of biocatalytic conversions is often dependent on finding an effective method for immobilization of the enzyme involved. This provides for its improved operational stability and facile recovery and re-use. Cross-linked enzyme aggregates (CLEAs®) constitute an effective methodology for enzyme immobilization with broad scope. The technique is exquisitely simple, involving precipitation from aqueous buffer and subsequent cross-linking of the resulting physical aggregates of enzyme molecules, and amenable to rapid optimization. The resulting CLEAs are stable, recyclable biocatalysts exhibiting high activity retention, in some cases higher than that of the free enzyme they were derived from. The enzyme does not need to be of high purity since the methodology essentially combines purification and immobilization into a single operation. The technique can also be applied to the preparation of combi-CLEAs containing two or more enzymes. For example, an oxynitrilase/nitrilase CLEA for the one-pot synthesis of (S) mandelic acid from benzaldehyde in high yield and enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Souza S. F. (1999) Immobilized enzymes in bioprocess. Curr. Sci. 77, 69–79.

    Google Scholar 

  2. Kragl U. (1996) Enzyme membrane reactors. In: Industrial Enzymology, 2nd edition (Godfrey T., and West S., eds.), MacMillan, Basingstoke, pp. 274–283.

    Google Scholar 

  3. Fernández-Lorente G., Terreni M., Mateo C., et al. (2001) Modulation of lipase properties in macro-aqueous systems by controlled enzyme immobilization: enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase. Enzyme Microb. Technol. 28, 389–396.

    Article  Google Scholar 

  4. Cao L., van Langen L. M., and Sheldon R. A. (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr. Opin. Biotechnol. 14, 387–394.

    Article  CAS  Google Scholar 

  5. Doscher M. S. and Richards F. M. (1963) The actvitiy of an enzyme in the crystalline state: Ribonuclease S. J. Biol. Chem. 238, 2399–2406.

    CAS  Google Scholar 

  6. Quiocho F. A. and Richards F. M. (1964) Intermolecular cross-linking of a protein in the crystalline state: carboxypeptidase A. Proc. Natl. Acad. Sci. USA 114, 7314–7316.

    Google Scholar 

  7. St. Clair N. L. and Navia M. A. (1992) Cross-linked enzyme crystals as robust biocatalysts. J. Am. Chem. Soc. 114, 7314–7316.

    Article  CAS  Google Scholar 

  8. Margolin A. L. and Navia M. A. (2001) Protein crystals as novel catalytic materials. Angew. Chem. Int. Ed. Engl. 40, 2204–2222.

    Article  CAS  Google Scholar 

  9. Lalonde J. (1997) Practical catalysis with enzyme crystals. Chemtech 27(2), 38–45.

    CAS  Google Scholar 

  10. Margolin A. L. (1996) Novel crystalline catalysts. Tibtech 14, 223–230.

    CAS  Google Scholar 

  11. Häring D. and Schreier P. (1999) Cross-linked enzyme crystals. Curr. Opin. Biotechnol. 3, 35–38.

    Article  Google Scholar 

  12. Brown D. L. and Glatz C. E. (1987) Aggregate breakage in protein precipitation. Chem. Eng. Sci. 42, 1831–1839.

    Article  CAS  Google Scholar 

  13. Cao L., van Rantwijk F., and Sheldon R. A. (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org. Lett. 2, 1361–1364.

    Article  CAS  Google Scholar 

  14. Wegman M. A., Janssen M. H. A., van Rantwijk F., and Sheldon R. A. (2001) Towards biocatalytic synthesis of β-lactam antibiotics. Adv. Synth. Catal. 343, 559–576.

    Article  CAS  Google Scholar 

  15. van Langen L. M., Oosthoek N. H. P., van Rantwijk F., and Sheldon R. A. (2003) Pencillin acylase catalysed synthesis of ampicillin in hydrophilic organic solvents. Adv. Synth. Catal. 345, 797–801.

    Article  Google Scholar 

  16. Lopez-Serrano P., Cao L., van Rantwijk F., and Sheldon R. A. (2002) NL 1017258, to Delft University of Technology.

    Google Scholar 

  17. Theil F. (2000) Enhancement of selectivity and reactivity of lipases by additives. Tetrahedron 56, 2905–2919.

    Article  CAS  Google Scholar 

  18. López-Serrano P., Cao L., van Rantwijk F., and Sheldon R. A. (2002) Crosslinked enzyme aggregates with enhanced activity: application to lipases. Biotechnol. Lett. 24, 1379–1383.

    Article  Google Scholar 

  19. Mateo C., Chmura A., Rustler S., van Rantwijk F., Stolz A., and Sheldon R. A., manuscript in preparation.

    Google Scholar 

  20. Bourbonnais R. and Paice M. G. (1990) Oxidation of nonphenolic substrates-an expanded role for laccase in lignin biodegradation. FEBS Lett 267, 99–102.

    Article  CAS  Google Scholar 

  21. Dvorakova J., Volfova O., and Kopecky J. (1997) Characterization of phytase produced by Aspergillus niger. Folia Microbiologica 42, 349–352.

    Article  CAS  Google Scholar 

  22. Avigad G., Asensio C., Horecker B. L., and Amaral D. (1962) d-Galactose oxidase of Polyporys circinatus. J. Biol. Chem. 237, 2736–2740.

    CAS  Google Scholar 

  23. Asaad N. and Engberts J. F. B. N. (2003) Cytosol-mimetic chemistry: Kinetics of the trypsin-catalyzed hydrolysis of p-nitrophenyl acetate upon addition of polyethylene glycol and N-tert-butyl acetoacetamide. J. Am. Chem. Soc. 125, 6874–6875.

    Article  CAS  Google Scholar 

  24. Kim C. S., Ji E. S., and Oh D. K. (2003) Expression and characterization of Kluyveromyces lactis β-galactosidase in Escherichia coli. Biotechnol. Lett. 25, 1769–1774.

    Article  CAS  Google Scholar 

  25. Rella R., Raia C. A., Pensa M., et al. (1987) A novel archaebacterial NAD+-dependent alcohol dehydrogenase. Purification and properties. Eur. J. Biochem. 167, 475–479.

    Article  CAS  Google Scholar 

  26. Gröger H., Hummel W., Rollmann C., et al. (2004) Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase. Tetrahedron 60, 633–640.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Sheldon, R.A., Schoevaart, R., van Langen, L.M. (2006). Cross-Linked Enzyme Aggregates. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics