Skip to main content

Improved Stabilization of Chemically Aminated Enzymes Via Multipoint Covalent Attachment on Glyoxyl Supports

  • Protocol
Immobilization of Enzymes and Cells

Abstract

Chemical modification and immobilization of proteins have been usually utilized as parallel techniques to improve enzyme stability. In this chapter, we show that chemical modification of the protein surface to greatly increase its reactivity with the groups of a support activated with glyoxyl residues may be a very good alternative for greatly increasing the protein stability via multipoint covalent attachment. For this purpose, some of the carboxylic acids of the proteins are transformed into amino groups by reaction with ethylendiamine via the carbodiimide coupling method. The new amino groups have a lower pK than Lys residues, enabling immobilization under milder conditions and a higher degree of stabilization. These results show that the coupling of different stabilization techniques may yield a synergistic effect, higher than any individual strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haki G. D. and Rakshit S. K. (2003) Developments in industrially important thermostable enzymes: a review. Bioresource Technol. 89, 17–34

    Article  CAS  Google Scholar 

  2. Wong S. S and Wong L. J. (1992) Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme Microb Technol. 14, 866–874

    Article  CAS  Google Scholar 

  3. Klibanov A. M. (1983) Immobilized enzymes against termal inactivation. Adv. Appl. Microbiol. 29, 1–28.

    Article  CAS  Google Scholar 

  4. Alvaro G., Fernández-Lafuente R., Blanco R. M., and Guisán J. M. (1990) Immobilization-stabilization of penicillin acylase from E. coli. Appl. Biochem. Biotech. 26, 181–195.

    Article  CAS  Google Scholar 

  5. Guisán J. M., Alvaro G., Fernández-Lafuente R., Rosell C. M., Garcia-Lopez J. L., and Tagliatti A. (1993) Stabilization of a heterodymeric enzyme by multipoint covalent immobilization: Penicillin G acylase from Kluyvera citrophila. Biotechnol. Bioeng. 42, 455–464.

    Article  Google Scholar 

  6. Blanco R. M. and Guisán J. M. (1988) Protecting effect of competitive inhibitors during very intense insolubilized enzyme-activated support multipoint attachments: trypsin (amine)-agarose (aldehyde) system. Enzyme Microb. Technol. 10, 227–232.

    Article  CAS  Google Scholar 

  7. Guisán J. M., Bastida A., Cuesta A. C., Fernández-Lafuente R., and Rosell C. M. (1991) Immobilization-stabilization of chymotrypsin by covalent attachment to aldehyde agarose gels. Biotechnol. Bioeng. 39, 75–84.

    Google Scholar 

  8. Tardioli P. W., Pedroche J., Giordano R. L., Fernández-Lafuente R., and Guisán J. M. (2003) Hydrolysis of Proteins by Immobilized-Stabilized Alcalase®-Glyoxyl Agarose. Biotechnol. Progr. 19, 352–360.

    Article  CAS  Google Scholar 

  9. Pedroche J., Yust M. M., Girón-Calle J., et al. (2002) Stabilization-immobilization of carboxypeptidase to aldehyde-agarose gels. A practical example in the hydrolysis of casein. Enzyme Microb. Technol. 31, 711–718.

    Article  CAS  Google Scholar 

  10. Tardioli P. W., Fernández-Lafuente R., Guisán J. M., and Giordano R. L. C. (2003) Design of New Immobilized-Stabilized Carboxypeptidase A Derivative for Production of Aromatic Free Hydrolysates of Proteins. Biotechnol. Prog. 19, 565–574.

    Article  CAS  Google Scholar 

  11. Bes T., Gomez-Moreno C., Guisán J. M., and Fernández-Lafuente R. (1995) Selective enzymetic oxidations: stabilization by multipoint covalent attachment of ferredoxin NAD-reductasa: an interesting cofactor recycling enzyme” J. Mol. Catal. 98, 161–169.

    Article  CAS  Google Scholar 

  12. Fernández-Lafuente R., Cowan D.A., and Wood A.N.P. (1995) Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzyme Microb. Technol. 17, 366–372.

    Article  Google Scholar 

  13. Guisán J. M, Polo E., Agudo J., Romero M.D., Alvaro G., and Guerra M.J. (1997) Immobilization-stabilization of thermolysin onto activated agarose gels. Biocatal. Biotrans. 15, 159–173.

    Article  Google Scholar 

  14. Betancor L., Hidalgo A., Fernández-Lorente G., et al. (2003) The use of physicochemical tools to solve enzyme stability problems alters the choice of the optimal enzyme: stabilization of D-aminoacid oxidase. Biotechnol. Prog. 19, 784–788.

    Article  CAS  Google Scholar 

  15. Betancor L., Hidalgo A., Fernández-Lorente G., et al. (2003) Preparation of a stable biocatalyst of bovine liver catalase. Biotechnol. Prog. 19, 763–767.

    Article  CAS  Google Scholar 

  16. Hidalgo A., Betancor L., Lopez-Gallego F., et al. (2003) Preparation of a versatile biocatalyst of immobilized and stabilized catalase from Thermus thermophilus. Enzyme Microb. Technol. 33, 278–285.

    Article  CAS  Google Scholar 

  17. Otero C., Ballesteros A., and Guisán J. M. (1991) Immobilization/stabilization of lipase from Candida rugosa. Appl. Biochm. Biote chnol. 19, 163–175.

    Article  Google Scholar 

  18. Palomo J. M., Muñoz G., Fernández-Lorente G., Mateo C., Fernández-Lafuente R., and Guisán J. M. (2002) Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): Immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Cat B Enzymatic. 19,20, 279–286.

    Article  Google Scholar 

  19. Suh C-W, Choi G-S, and Lee E-K. (2003) Enzymatic cleavage of fusion protein using immobilized urokinase covalently conjugated to glyoxyl-agarose. Biotecnol. Appl. Biochem. 37, 149–155.

    Article  CAS  Google Scholar 

  20. Toogood H. S., Taylor I. N., Brown R. C., Taylor S. J. C., McCague R., and Littlechild J.A. (2002) Immobilisation of the Thermostable L-aminoacylase from Thermus litotalis to generate a Reusable Industrial Biocatalyst. Biocatal. Biotrans. 20, 241–249.

    Article  CAS  Google Scholar 

  21. Ichikawa S., Takano K., Kuroiwa T., Hiruta O., Sato S., and Mukataka S. (2002) Immobilization and stabilization of chitosanase by multipoint attachment to agar gel support J. Bioscien. Bioeng. 93, 201–206.

    Article  CAS  Google Scholar 

  22. Kuroiwa T., Ichikawa S., Sato S., and Mukataka S. (2003) Improvement of the yield of physiologically active oligosaccharides in continuous hydrolysis of chitosan using immobilized chitosanases. Biotechnol. Bioeng. 84, 121–127.

    Article  CAS  Google Scholar 

  23. Kuroiwa T., Ichikawa S., Sosaku H., Sato S., and Mukataka S. (2002) Factors affecting the composition of oligosaccharides produced in chitosan hydrolysis using immobilized chitosanases. Biotechnol. Prog. 18, 969–974.

    Article  CAS  Google Scholar 

  24. Guisán J. M., Bastida A., Blanco R. M., Fernández-Lafuente R., and García-Junceda E. (1997) Immobilization of enzymes on glyoxyl supports:. strategies for nzyme stabilization by multipoint covalent attachment. In: Immobilization of Enzymes and Cells, Methods in Biotechnology (Bickerstaff G. S., ed.) vol 1, Humana Press Totowa, NJ, pp. 277–288.

    Google Scholar 

  25. Mateo C., Abian O., Fernandez-Lafuente R., and Guisan J. M. (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favouring additional multipoint covalent attachment. Enzyme Microb. Technol. 26, 509–515.

    Article  CAS  Google Scholar 

  26. Mateo C., Abian O., Bernedo M., et al. (2005) Special mechanism of immobilization of proteins in glyoxyl supports. Enzyme Microb. Technol. 37, 456–462.

    Article  CAS  Google Scholar 

  27. Abian O., Grazú V., Hermoso J., et al. (2004) Stabilization of penicillin G acylase from Escherichia coli: site-directed mutagenesis of the protein surface to increase multipoint covalent attachment. Appl Environ Microb, 70, 1249–1251.

    Article  CAS  Google Scholar 

  28. López-Gallego F., Montes T., Fuentes M., et al. (2005) Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. J. Biotech. 116, 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Montes, T. et al. (2006). Improved Stabilization of Chemically Aminated Enzymes Via Multipoint Covalent Attachment on Glyoxyl Supports. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics