Skip to main content

Immobilization of Enzymes as the 21st Century Begins

An Already Solved Problem or Still an Exciting Challenge?

  • Protocol
Immobilization of Enzymes and Cells

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 22))

Abstract

The main goal of enzyme immobilization is the industrial re-use of enzymes for many reaction cycles. In this way, simplicity and improvement of enzyme properties have to be strongly associated with the design of protocols for enzyme immobilization. In spite of their excellent catalytic properties, enzymes have many other characteristics that are not very suitable for their use in chemical industries: low stability, inhibition by high concentrations of substrates and products, low activity and selectivity toward nonnatural substrates under nonconventional conditions, and so on. The possibility of improving these unsuitable characteristics via the design of simple immobilization protocols is a very exciting goal. There are many protocols for immobilization of enzymes but very few are also very simple and/or very capable of improving enzyme properties. Novel immobilization protocols are still needed in order to achieve a massive implementation of enzymes as catalysts of the most complex chemical processes under the most benign experimental and environmental conditions. A critical review of enzyme immobilization under this point of view is still necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wong C.-H. and Whitesides G. M. (1994). Enzymes in synthetic organic chemistry. In: Tetrahedron Organic Chemistry Series (Baldwin J. E., Williams R. M., Bäckvall J.-E., eds.). Pergamon, Amsterdam, The Netherlands, 12, pp. 41–130.

    Google Scholar 

  2. Robertson D. E. and Steer B. A. (2004) Recent progress in biocatalyst discovery and optimization. Curr. Opin. Chem. Biol. 8, 141–149

    Article  CAS  Google Scholar 

  3. van den Burg B. and Eijsink V. G. H. (2002) Selection of mutations for increased protein stability. Curr. Opin. Chem. Biol. 13, 333–337.

    Google Scholar 

  4. Fernández-Lafuente R, Hernández-Jústiz O., Mateo C., et al. (2001) Biotransformations catalyzed by multimeric enzymes: stabilization of tetrameric ampicillin acylase permits the optimization of ampicillin synthesis under dissociationc onditions. Biomacromolecules 2, 95–104.

    Article  Google Scholar 

  5. Betancor L., Hidalgo A., Fernández-Lorente G., Mateo C., Fernández-Lafuente R., and Guisán J. M. (2003) Preparation of an stable biocatalyst of bovine liver catalase. Biotechnol. Prog. 19, 763–767.

    Article  CAS  Google Scholar 

  6. Rosell C. M., Terreni M., Fernández-Lafuente R., and Guisán J. M. (1998) A criterium for the selection of monophasic solvents for enzymatic synthesis. Enzyme Microb. Technol. 23, 64–69.

    Article  CAS  Google Scholar 

  7. Guisán J. M., Álvaro G., Rosell C. M., and Fernández-Lafuente R. (1994) Industrial design of enzymatic processes catalized by very active immobilised derivatives. Utilisation of diffusinal limitation (gradients of pH) as a profitable tool in enzyme engineering. Biotech. Appl. Biochem. 20, 357–369.

    Google Scholar 

  8. Illanes A., and Wilson L. (2003) Enzyme Reactor Design Under Thermal Inactivation. Crit Rev. Biotechnol, 23, 61–93.

    Article  CAS  Google Scholar 

  9. Spiess A., Schlothauer R. C., Hinrichs J., Scheidat B., and Kasche V. (1999) pH gradients in immobilized amidases and their influence on rates and yields of beta-lactam hydrolysis. Biotechnol. Bioeng. 62, 267–277.

    Article  CAS  Google Scholar 

  10. Bickerstaff G. F., ed. 1997. Immobilization of Enzymes and Cells, Methods is Biotechnology, Humana Press, Totowa, NJ.

    Google Scholar 

  11. Katchalski-Katzir E. (1993) Immobilized enzymes: learning from past successes and failures. TIB 11, 471–478.

    CAS  Google Scholar 

  12. Fernández-Lafuente R. and Guisán J. M. (1998) Enzyme and protein engineering via immobilization and post-immobilization techniques. In: RecentResearch Developments in Biotechnology and Bioengineering. (Pandalai S. G., ed.), Research Signpost, Kerala, India, pp. 299–309.

    Google Scholar 

  13. Pessela B. C. C., Mateo C., Carrascosa A. V. et al. (2003) One step purification, covalent immobilization and additional stabilization of a thermophilic poly-histagged beta-galactosidase of Thermus sp. strain t2, novel heterofunctional chelate-epoxy supports. Biomacromolecules 4, 107–113.

    Article  CAS  Google Scholar 

  14. Abian O., Grazú V., Hermoso J., et al. (2004) Stabilization of Penicillin G Acylase from Escherichia coli: site directed mutagenesis of the protein surface to increase multipoint covalent attachment. Appl. Envir. Microb. 70, 1249–1251.

    Article  CAS  Google Scholar 

  15. López-Gallego F., Montes T., Fuentes M., et al. (2005) Chemical increase of the amount of reactive groups on enzyme surface to improve its stabilization via multipoint covalent attachment. J. Biotechnol. 116, 1–10.

    Article  Google Scholar 

  16. Betancor L, Fuentes M., Dellamora-Ortiz G., et al. (2005) Dextran aldehyde coating of glucose oxidase immobilized on magnetic nano-particles prevents inactivation by gas bubbles. J. Mol. Catal., B Enzym. 32, 97–101.

    Article  CAS  Google Scholar 

  17. Guisán J. M. (1988) Aldehyde gels as activated support for immobilization-stabilization of enzymes. Enzyme Microb. Technol. 10, 375–382.

    Article  Google Scholar 

  18. Mateo C., Abian O., Bernedo M., et al. (2005) Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb. Technol. In press.

    Google Scholar 

  19. Mateo C., Abian O., Fernández-Lorente G., Predoche J., Fernández-Lafuente R., and Guisán J. M. (2002) Sepabeads: a novel epoxy-support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol. Progr. 18, 629–634.

    Article  CAS  Google Scholar 

  20. Mateo C., Torres R., Fernández-Lorente G., et al. (2003) Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules 4, 772–777.

    Article  CAS  Google Scholar 

  21. Poltorak O. M., Chukhary E. S., and Torshin I. Y. (1998) Dissociative thermal inactivation, stability and activity of oligomeric enzymes. Biochemistry (Moscow) 63, 360–369.

    Google Scholar 

  22. Fernández-Lafuente R., Rodríguez V., Mateo C., et al. (1999) Strategies for the stabilization of multimeric enzymes via immobilization and post-immobilization techniques. J. Mol. Catal., B Enzym. 7, 181–189.

    Article  Google Scholar 

  23. Wilson L., Betancor L. Fernández-Lorente G., et al. (2004) Crosslinked aggregates of multimeric enzymes: a simple and efficient methodology to stabilize their quaternary structure. Biomacromolecules 5, 814–817.

    Article  CAS  Google Scholar 

  24. Bastida A., Sabuquillo P., Armisen P., Fernández-Lafuente R., Huguet J., and Guisán J. M. (1998) A single step purification, immobilization and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol. Bioeng. 58, 486–493.

    Article  CAS  Google Scholar 

  25. Fernández-Lafuente R., Armisen P., Sabuquillo P., Fernández-Lorente G., and Guisán J. M. (1998) Immobilization of lipases by selective adsorption on hydrophobic supports. Chem. Phys. Lipids. 93, 185–197.

    Article  Google Scholar 

  26. Palomo J. M., Muñoz G., Fernández-Lorente G., Mateo C., Fernández-Lafuente R., and Guisán J. M. (2002) Interfacial adsorption of lipases on very hydrophobic support (octadecyl Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal., B Enzym.. 19–20C, 279–286.

    Article  Google Scholar 

  27. Fernández-Lafuente R., Rosell C. M., Álvaro G., and Guisán J. M. (1992) Additional stabilisation of penicillin G acylase by controlled chemical modification of immobilised/stabilised derivatives. Enzyme Microb. Technol. 14, 489–495.

    Article  Google Scholar 

  28. Fernández-Lafuente R., Rosell C. M., Guisán J. M., Caanan-Haden L., and Rodes L. (1999) Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives dramatic stabilization of penicillin acylase versus organic solvents. Enzyme Microb. Technol. 24, 96–103.

    Article  Google Scholar 

  29. Abian O, Wilson L., Mateo C., et al. (2002) Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding immobilized enzyme molecules. New enzyme derivatives to be used in any reaction medium. J. Mol. Cat B Enzymatic. 19-20C, 295–303.

    Article  Google Scholar 

  30. Wilson L., Illanes A., Abián O., Pessela B. C. C., Fernández-Lafuente R., and Guisán J. M. (2004) Co-aggregation of penicillin g acylase and polyionic polymers: a simple methodology to prepare enzyme biocatalysts stable in organic media. Biomacromolecules 5, 852–857.

    Article  CAS  Google Scholar 

  31. Penzol G., Armisen P., Fernández-Lafuente R., Rodes L., and Guisán J. M. (1998) Use of dextrans as long, inert and hydrophilic spacer arms to improve the performance of immobilized proteins acting on macromolecules. Biotechnol. Bioeng. 60, 518–523.

    Article  CAS  Google Scholar 

  32. Turkova J. (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatography B 722, 11–31.

    Article  CAS  Google Scholar 

  33. Fuentes M., Mateo C., Guisán J. M., and Fernández-Lafuente R. (2005) Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Biosen. Bioelec. 20, 1380–1387.

    Article  CAS  Google Scholar 

  34. Lund V., Schmid R., Rickwood D., and Hornes E. (1988) Assesment of methods for covalent biding of nucleic acids to magnetic beads. Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions. Nucleic Acids Res. 16, 10861–10880.

    Article  CAS  Google Scholar 

  35. Fuentes M., Mateo C., Garcia L., Tercero J. C., Guisán J. M., and Fernández-Lafuente R. (2004) The directed covalent immobilization of aminated dna probes on aminated plates. Biomacromolecules 5, 883–888.

    Article  CAS  Google Scholar 

  36. Pessela B. C. C, Torres R., Fuentes M., Mateo C., Fernandez-Lafuente R., and Guisán J. M. (2004) Immobilization of rennet from Mucor miehei via its sugar chain—its use in milk coagulation. Biomacromolecules 5, 2029–2033.

    Article  CAS  Google Scholar 

  37. Fuentes M., Mateo C., Rodríguez A., et al. (2005) Detecting minimal traces of dna by using dna covalently attached to superparamagnetic nanoparticles and PCR-ELISA in one step. Biosen. Bioelec. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Guisan, J.M. (2006). Immobilization of Enzymes as the 21st Century Begins. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics