Skip to main content

Follow-Up of Natural Product Isolation

  • Protocol
Natural Products Isolation

Part of the book series: Methods in Biotechnology ((MIBT,volume 4))

Abstract

What do we mean by “follow-up”? Let us assume that the natural product just isolated is of some interest, that is to say, it may have some biological activity worthy of further examination, it may represent a novel structure, or it may be of interest for ecological or chemotaxonomic reasons. In each case, we may want more of the compound, or analogs, biosynthetic precursors, and other related metabolites. If the compound is biologically active, we may look to these related compounds to provide structure-activity relationship data, for compounds that are more active, more chemically or metabolically stable, or in commercial terms will strengthen the patent position of the original compound by describing the wider family of metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grabley, S., Hammann, P., Kluge, H., Wink, J., Kricke, P., and Zeeck, A. (1991) Secondary metabolites by chemical screening 4. Detection, isolation and biological activities of chiral synthons from Streptomyces. J. Antibiot. 44, 797–800.

    CAS  Google Scholar 

  2. Dawson, M. J., Farthing, J. E., Marshall, P. S., Middleton, R. F., O’Neill, M. J., Shuttleworth, A., Stylli, C., Tait, R. M., Taylor, P. M., Wildman, H. G., Buss, A. D. Langley, D., and Hayes, M. V. (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J. Antibiot. 45, 639–647.

    CAS  Google Scholar 

  3. Sidebottom, P. J., Highcock, R. M., Lane, S. J., Procopiou, P. A., and Watson, N. S. (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma II. Structure elucidation. J. Antibiot. 45, 648–658.

    CAS  Google Scholar 

  4. Blows, W. M., Foster, G., Lane, S. J., Noble, D., Piercey, J. E., Sidebottom, P. J., and Webb, G. (1994) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma V. Minor metabolites. J. Antibiot. 47, 740–754.

    CAS  Google Scholar 

  5. Trilli, A. (1990) Kinetics of secondary metabolite production, in Microbial Growth Dynamics (Poole, R. K., Bazin, M. J., and Keevil, C. W., eds.), IRL, Oxford, pp. 103–126.

    Google Scholar 

  6. Hutter, R. (1982) Design of culture media capable of provoking wide gene expression, in Bioactive Microbial Products: Search and Discovery (Bu’Lock, J. D., Nisbet, L. J., and Winstanley, D. J., eds.), Academic, London, pp. 37–50.

    Google Scholar 

  7. Furumai, T., Kakinuma, S., Yamamoto, H., Komiyama, N., Suzuki, K., Saitoh, K., and Oki, T. (1993) Biosynthesis of the pradimicin family of antibiotics I. Generation and selection of pradimicin non-producing mutants. J. Antibiot. 46, 412–419.

    CAS  Google Scholar 

  8. Tsuno, T., Yamamoto, H., Narita, Y., Suzuki, K., Hasegawa, T., Kakinuma, S., Saitoh, K., Furumai, T., and Oki, T. (1993) Biosynthesis of the pradimicin family of antibiotics II. Fermentation, isolation and structure determination of metabolites associated with pradimicins biosynthesis. J. Antibiot. 46, 420–429.

    CAS  Google Scholar 

  9. Yoshimoto, A., Matsuzawa, Y., Oki, T., Takeuchi, T., and Umezawa, H. (1981) New anthracycline metabolites from mutant strains of Streptomyces galilaeus MA144-M1. I. Isolation and characterization of various blocked mutants. J. Antibiot. 34, 951–958.

    CAS  Google Scholar 

  10. Matsuzawa, Y., Yoshimoto, A., Shibamoto, N., Tobe, H., Oki, T., Naganawa, H., Takeuchi, T., and Umezawa, H. (1981) New anthracycline metabolites from mutant strains of Streptomyces galilaeus MA144-M1. II. Structure of 2-hydroxyaklavinone and new aklavinone glycosides. J. Antibiot. 34, 959–964.

    CAS  Google Scholar 

  11. Tobe, H., Yoshimoto, A., Ishikura, T., Naganawa, H., Takeuchi, T., and Umezawa, H. (1982) New anthracycline metabolites from two blocked mutants of Streptomyces galilaeus MA144-M1. J. Antibiot. 35, 1641–1645.

    CAS  Google Scholar 

  12. Beremand, M. N., Van Middlesworth, F., Taylor, S., Plattner, R., and Weisleder, D. (1988) Leucine auxotrophy specifically alters the pattern of tricothecene production in a T-2 Toxin-producing strain of Fusarium sporotrichioides. Appl. Env. Microbiol. 54, 2759–2766.

    CAS  Google Scholar 

  13. Van Middlesworth, F., Desjardins, A., Taylor, S., and Plattner, R. (1986) Trichodiene accumulation by ancymidol treatment of Gibberella pulicaris. J. Chem. Soc. Chem. Comm. 1156, 1157.

    Google Scholar 

  14. Jones, C. A., Sidebottom, P. J., Cannell, R. J. P., Noble, D., and Rudd, B. A. M. (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma III. Biosynthesis. J. Antibiot. 45, 1492–1498.

    CAS  Google Scholar 

  15. Cannell, R. J. P., Dawson, M. J., Hale, R. S., Hall, R. M., Noble, D., Lynn, S., and Taylor, N. L. (1993) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma IV. Preparation of fluorinated squalestatins by directed biosynthesis. J. Antibiot. 46, 1381–1389.

    CAS  Google Scholar 

  16. Cannell, R. J. P., Dawson, M. J., Hale, R. S., Hall, R. M., Noble, D., Lynn, S., and Taylor, N. L. (1994) Production of additional squalestatin analogues by directed biosynthesis. J. Antibiot. 47, 247–249.

    CAS  Google Scholar 

  17. Thiericke, R. and Rohr, J. (1993) Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat. Prod. Rep. 10, 265–289.

    Article  CAS  Google Scholar 

  18. Boeck, L. D. and Betzel, R. W. (1990) A54145, a new lipopeptide antibiotic complex: factor control through precursor directed biosynthesis. J. Antibiot. 43, 607–615.

    CAS  Google Scholar 

  19. Claridge, C, Bush, J. A., Doyle, T. W., Nettleton, D. E., Mosley, J. E., Kimball, D., Kammer, M. F., and Veitch, J. (1986) New mitomycin analogs produced by directed biosynthesis. J. Antibiot. 39, 437–446.

    CAS  Google Scholar 

  20. Traber, R., Hofmann, H., and Kobel, H. (1989) Cyclosporins-new analogues by precursor directed biosynthesis. J. Antibiot. 42, 591–597.

    CAS  Google Scholar 

  21. Hensens, O. D., White, R. F., Goegelman, R. T., Inamine, E. S., and Patchett, A. A. (1992) The preparation of [2-deutero-3-fluoro-D-ala8]cyclosporin A by directed biosynthesis. J. Antibiot. 45, 133–135.

    CAS  Google Scholar 

  22. Lawen, A., Traber, R., Geyl, D., Zocher, R., and Kleinkauf, H. (1989) Cell-free biosynthesis of new cyclosporins. J. Antibiot. 42, 1283–1289.

    CAS  Google Scholar 

  23. Hafner, E. W., Holley, B. W., Holdom, K. S., Lee, S. E., Wax, R. G., Beck, D., McArthur, H. A. I., and Wernau, W. C. (1991) Branched-chain fatty acid requirement for avermectin production by a mutant of Streptomyces avermitilis lacking branched-chain 2-oxo acid dehydrogenase activity. J. Antibiot. 44, 349–356.

    CAS  Google Scholar 

  24. Dutton, C. J., Gibson, S. P., Goudie, A. C., Holdom, K. S., Pacey, M. S., Ruddock, J. C., Bu’Lock, J. D., and Richards, M. K. (1991) Novel avermectins produced by mutational biosynthesis. J. Antibiot. 44, 357–365.

    CAS  Google Scholar 

  25. Hamill, R. L., Elander, R. P., Mabe, J. A., and Gorman, M. (1970) Metabolism of tryptophan by Pseudomonas aureofaciens III. Production of substituted pyrrolnitrins from tryptophan analogues. Appl. Microbiol. 19, 721–725.

    CAS  Google Scholar 

  26. Kachi, H., Hattori, H., and Sassa, T. (1986) A new antifungal substance, bromomonilicin, and its precursor produced by Monilinia fructicola. J. Antibiot. 39, 164–166.

    CAS  Google Scholar 

  27. Sariaslani, F. S. and Kunz, D. A. (1986) Induction of cytochrome P-450 in Streptomyces griseus by soybean flour. Biochem. Biophys. Res. Comm. 141, 405–410.

    Article  CAS  Google Scholar 

  28. Trower, M. K., Sariaslani, F. S., and F. S. Kitson (1988) Xenobiotic oxidation by cytochrome P-450-enriched extracts of Streptomyces griseus. Biochem. Biophys. Res. Comm. 157, 1417–1422.

    Article  CAS  Google Scholar 

  29. Middleton, R. F., Foster, G., Cannell, R. J. P., Sidebottom, P. J., Taylor, N. L., Noble, D., Todd, M., Dawson M. J., and Lawrence, G. C. (1995) Novel squalestatins produced by biotransformation. J. Antibiot. 48, 311–316.

    CAS  Google Scholar 

  30. Atta-ur-Rahman, Choudhary, M. I., Ata, A., Alam, M., Farooq, A., Perveen, S., and Shekhani, M. S. (1994) Microbial transformations of 7a-hydroxyfrullanolide. J. Nat. Prod. 57, 1251–1255.

    Article  CAS  Google Scholar 

  31. Borghi, A., Ferrari, P., Gallo, G. G., Zanol, M., Zerilli, L. F., and Lancini, G. C. (1991) Microbial de-mannosylation and mannosylation of teicoplanin derivatives. J. Antibiot. 44, 1444–1451.

    CAS  Google Scholar 

  32. Chen, T. S., Doss, G. A., Hsu, A., Hsu, A., Lingham, R. B., White, R. F., and Monaghan, R. L. (1993) Microbial transformation of L-696,474, a novel cytochalasin as an inhibitor of HIV-1 protease. J. Nat. Prod. 56, 755–761.

    Article  CAS  Google Scholar 

  33. Marshall, V. P. (1985) Microbial transformation of anthracycline antibiotics and their analogs. Dev. Ind. Microbiol. 26, 129–142.

    CAS  Google Scholar 

  34. Oki, T., Takatsuki, Y., Tobe, H., Yoshimoto, A., Takeuchi, T., and Umezawa, H. (1981) Microbial conversion of daunomycin, carminomycin I and feudomycin A to adriamycin. J. Antibiot. 34, 1229–1231.

    CAS  Google Scholar 

  35. Aszalos, A. A., Bachur, N. R., Hamilton, B. K., Langlykke, A., Roller, P. P., Sheikh, M. Y., Sutphin, M. S., Thomas, M. C., Wareheim, D. A., and Wright, L. H. (1977) Microbial reduction of the side-chain carbonyl of daunorubicin and N-acetyl daunorubicin. J. Antibiot. 30, 50–58.

    CAS  Google Scholar 

  36. Hamilton, B. K., Sutphin, M. S., Thomas, M. C., Wareheim, D. A., and Aszalos, A. A. (1977) Microbial N-acetylation of daunorubicin and daunorubicinol. J. Antibiot. 30, 425–426.

    CAS  Google Scholar 

  37. Blumauerova, M., Kralovcova, E., Mateju, J., Jizba, J., and Vanek, Z. (1979) Biotransformations of anthracyclinones in Streptomyces coeruleorubidus and Streptomyces galilaeus. Folia Microbiol. 24, 117–127.

    Article  CAS  Google Scholar 

  38. Nakagawa, K., Torikata, A., Sato, K., and Tsukamoto, Y. (1990) Microbial conversion of milbemycins: 30-Oxidation of milbemycin A4 and related compounds by Amycolata autotrophica and Amycolatopsis mediterranei. J. Antibiot. 43, 1321–1328.

    CAS  Google Scholar 

  39. Nakagawa, K., Sato, K., Tsukamoto, Y., and Torikata, A. (1992) Microbial conversion of milbemycins: 29-Hydroxylation of milbemycins by genus Syncephalastrum. J. Antibiot. 45, 802–805.

    CAS  Google Scholar 

  40. Nakagawa, K., Miyakoshi, S., Torikata, A., Sato, K., and Tsukamoto, Y. (1991) Microbial conversion of milbemycins: Hydroxylation of milbemycin A4 and related compounds by Cunninghamella echinulata ATCC 9244. J. Antibiot. 44, 232–240.

    CAS  Google Scholar 

  41. Nakagawa, K., Sato, K., Okazaki, T., and Torikata, A. (1992) Microbial conversion of milbemycins: 13β,29-Dihydroxylation of milbemycins by soil isolate Streptomyces cavourensis. J. Antibiot. 44, 803–805.

    Google Scholar 

  42. Ramos Tombo, G. M., Ghisalba, O., Schar, H.-P., Frei, B., Maienfisch, P., and O’Sullivan, A. C. (1989) Diastereoselective microbial hydroxylation of milbemycin derivatives. Agric. Biol. Chem. 53, 1531–1535.

    CAS  Google Scholar 

  43. Baltz, R. H. and Hosted, T. J. (1996) Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol. 14, 245–250.

    Article  CAS  Google Scholar 

  44. Tsoi, C. J. and Khosla, C. (1995) Combinatorial biosynthesis of “unnatural” natural products: The polyketide example. Chem. Biol. 2, 355–362.

    Article  CAS  Google Scholar 

  45. Khosla, C. and Zawada, R. (1996) Generation of polyketide libraries via combinatorial biosynthesis. Trends Biotechnol. 14, 335–341.

    Article  CAS  Google Scholar 

  46. Hopwood, D. A. (1993) Genetic engineering of Streptomyces to create hybrid antibiotics. Curr. Opin. Biotechnol. 4, 53–537.

    Article  Google Scholar 

  47. Cane, D. E. and Xue, Q. (1996) Trichodiene synthase. Enzymatic formation of multiple sesquiterpenes by alteration of the cyclase active site. J. Am. Chem. Soc. 118, 1563, 1564.

    Article  CAS  Google Scholar 

  48. Atuegbu, A. Maclean, D., Nguyen, C., Gordan, E., and Jacobs, J. (1996) Combinatorial modification of natural products: preparation of unencoded and encoded libraries of Rauwolfia alkaloids. Biorg. Med. Chem. 4, 1097–1106.

    Article  CAS  Google Scholar 

  49. Davies H. G., Green, R. H., Kelly, D. R., and Roberts, S. M. (1989) Biotransformations in Preparative Organic Chemistry: The Use of Isolated Enzymes and Whole Cell Systems in Synthesis. Academic, London, UK.

    Google Scholar 

  50. Faber, K. (1997) Biotransformations in Organic Chemistry (3rd ed.), Springer-Verlag, Berlin, Germany.

    Google Scholar 

  51. Hanson, J. R. (1995) An Introduction to Biotransformations in Organic Chemistry, W. H. Freeman, Oxford, UK.

    Google Scholar 

  52. Cannell, R. J. P., Knaggs, A. R., Dawson, M. J., Manchee, G. R., Eddershaw, P. J., Fellows, I., Sutherland, D. R., Bowers, G., and Sidebottom, P. J. (1995) Microbial biotransformation of the angiotensin II antagonist GR117289 by Streptomyces rimosus to identify a mammalian metabolite. Drug Metab. Dispos. 23, 724–729.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cannell, R.J.P. (1998). Follow-Up of Natural Product Isolation. In: Cannell, R.J.P. (eds) Natural Products Isolation. Methods in Biotechnology, vol 4. Humana Press. https://doi.org/10.1007/978-1-59259-256-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-256-2_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-362-7

  • Online ISBN: 978-1-59259-256-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics