Skip to main content

Soft Electroporation Through 3D Hollow Nanoelectrodes

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2050))

Abstract

Generally, electroporation of in vitro cells is performed under very high electric fields to overcome the physical barrier of plasma membrane. Since traditional electroporation techniques make use of very high voltages, which is critical to cell viability, this study presents a microfluidic platform able to perform cell membrane electroporation with the application of low voltages (1.5–2 V). The platform is manufactured based on the milling by mean of focused ionic beam, which offers an established approach to fabricate ordered arrays of 3D gold hollow nanoelectrodes protruding from an insulating substrate. The novelty of this fabrication relies on the fact that the nanoelectrodes used for electroporation are simultaneously metallic, hollow and communicate through its nanochannels with an isolated microfluidic chamber beneath the device. Adherent cultured cells on the nanoelectrodes can be electroporated in this platform, and molecules can be selectively delivered only inside the porated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caprettini V, Cerea A, Melle G, Lovato L, Capozza R, Huang JA, Tantussi F, Dipalo M, De Angelis F (2017) Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Sci Rep 7(1):8524. https://doi.org/10.1038/s41598-017-08886-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chang LQ, Bertani P, Gallego-Perez D, Yang ZG, Chen F, Chiang CL, Malkoc V, Kuang TR, Gao KL, Lee LJ, Lu W (2016) 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale 8(1):243–252. https://doi.org/10.1039/c5nr03187g

    Article  CAS  PubMed  Google Scholar 

  3. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse glyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Article  CAS  Google Scholar 

  4. Ho SY, Mittal GS (1996) Electroporation of cell membranes: a review. Crit Rev Biotechnol 16(4):349–362. https://doi.org/10.3109/07388559609147426

    Article  CAS  PubMed  Google Scholar 

  5. Li LH, Wood M, Shivakumar R, Feller S, Wang S, Singh V, Holaday J, Fratantoni J, Liu LN (2001) High-flow electroporation: a novel approach for ex vivo gene therapy. Blood 98(11):425A–425A

    Google Scholar 

  6. Chang LQ, Gallego-Perez D, Zhao X, Bertani P, Yang ZG, Chiang CL, Malkoc V, Shi JF, Sen CK, Odonnell L, Yu JH, Lu W, Lee LJ (2015) Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Lab Chip 15(15):3147–3153. https://doi.org/10.1039/c5lc00553a

    Article  CAS  PubMed  Google Scholar 

  7. Joshi RP, Schoenbach KH (2000) Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: a numerical simulation study. Phys Rev E 62(1):1025–1033. https://doi.org/10.1103/PhysRevE.62.1025

    Article  CAS  Google Scholar 

  8. De Angelis F, Malerba M, Patrini M, Miele E, Das G, Toma A, Zaccaria RP, Di Fabrizio E (2013) 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett 13(8):3553–3558. https://doi.org/10.1021/nl401100x

    Article  CAS  PubMed  Google Scholar 

  9. Dipalo M, Messina GC, Amin H, La Rocca R, Shalabaeva V, Simi A, Maccione A, Zilio P, Berdondini L, De Angelis F (2015) 3D plasmonic nanoantennas integrated with MEA biosensors. Nanoscale 7(8):3703–3711. https://doi.org/10.1039/c4nr05578k

    Article  CAS  PubMed  Google Scholar 

  10. Moretti M, Di Fabrizio E, Cabrini S, Musetti R, De Angelis F, Firrao G (2008) An ON/OFF biosensor based on blockade of ionic current passing through a solid-state nanopore. Biosens Bioelectron 24(1):141–147. https://doi.org/10.1016/j.bios.2008.03.047

    Article  CAS  PubMed  Google Scholar 

  11. La Rocca R, Messina GC, Dipalo M, Shalabaeva V, De Angelis F (2015) Out-of-plane plasmonic antennas for Raman analysis in living cells. Small 11(36):4632–4637. https://doi.org/10.1002/smll.201500891

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yin, J., Li, Y. (2020). Soft Electroporation Through 3D Hollow Nanoelectrodes. In: Li, S., Chang, L., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 2050. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9740-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9740-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9739-8

  • Online ISBN: 978-1-4939-9740-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics