Skip to main content

Imaging Biomarkers: Keys to Decision-Making in Stroke

  • Protocol
  • First Online:
Stroke Biomarkers

Part of the book series: Neuromethods ((NM,volume 147))

  • 781 Accesses

Abstract

Imaging biomarkers are medical imaging features useful for the diagnosis, treatment, and assessment of stroke, including etiology, acuity, chronicity, suitability for therapy, therapy options, and prognosis. This chapter is intended for non-clinicians with a scientific background, who are interested in learning about stroke and biomarkers. The discussion is focused on clinical assessment scales and magnetic resonance- and X-ray computed tomography-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WSDC (2018) World stroke day campaign 2018. https://eso-stroke.org/eso/world-stroke-day-29-october-2018/

  2. CDC (2018) Stroke facts. CDC, Atlanta, GA

    Google Scholar 

  3. An SJ, Kim TJ, Yoon B-W (2017) Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke 19:3–10

    PubMed  PubMed Central  Google Scholar 

  4. Chimowitz MI et al (2005) Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 352:1305–1316

    CAS  PubMed  Google Scholar 

  5. Broussalis E, Trinka E, Hitzl W, Wallner A, Chroust V (2013) Comparison of stent-retriever devices versus the merci retriever for endovascular treatment of acute stroke. AJNR Am J Neuroradiol 34(2):366–372

    CAS  PubMed  PubMed Central  Google Scholar 

  6. WHO (1993) WHO international programme on chemical safety. Biomarkers and risk assessment: concepts and principles. WHO, Geneva. http://www.inchem.org/documents/ehc/ehc/ehc155.htm

    Google Scholar 

  7. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466

    PubMed  PubMed Central  Google Scholar 

  8. Goodsaid F, Frueh F (2007) Biomarker qualification pilot process at the US Food and Drug Administration. AAPS J 9:E105–E108

    CAS  PubMed  PubMed Central  Google Scholar 

  9. FDA (2018) Biomarker qualification program – list of qualified biomarkers. List of qualified biomarkers. https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/ucm535383.htm

  10. Fan J et al (2010) N-Methyl-d-aspartate receptor subunit- and neuronal-type dependence of excitotoxic signaling through post-synaptic density 95. J Neurochem 115:1045–1056

    CAS  PubMed  Google Scholar 

  11. Ankarcrona M et al (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    CAS  PubMed  Google Scholar 

  12. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    CAS  PubMed  Google Scholar 

  13. Attwell D et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA (2017) The translational significance of the neurovascular unit. J Biol Chem 292:762–770

    CAS  PubMed  Google Scholar 

  15. Hainsworth AH et al (2017) Neuropathology of white matter lesions, blood-brain barrier dysfunction, and dementia. Stroke 48:2799–2804

    PubMed  PubMed Central  Google Scholar 

  16. Dzialowski I et al (2006) Extent of early ischemic changes on computed tomography (CT) before thrombolysis: Prognostic value of the Alberta Stroke Program early CT score in ECASS II. Stroke 37:973–978

    PubMed  Google Scholar 

  17. Demchuk AM et al (2005) Importance of early ischemic computed tomography changes using ASPECTS in NINDS rtPA stroke study. Stroke 36:2110–2115

    PubMed  Google Scholar 

  18. Truwit C, Barkovich A, Gean-Marton A et al (1990) Loss of the insular ribbon: another early CT sign of acute middle cerebral artery infarction. Radiology 176:801–906

    CAS  PubMed  Google Scholar 

  19. Kamalian S, Kemmeling A, Borgie R, Morais L (2013) Admission insular infarction >25% is the strongest predictor of large mismatch loss in proximal MCA stroke. Stroke 44:3084–3089

    PubMed  PubMed Central  Google Scholar 

  20. Tomura N et al (1988) Early CT finding in cerebral infarction: obscuration of the lentiform nucleus. Radiology 168:463–467

    CAS  PubMed  Google Scholar 

  21. Barber PA et al (2001) Hyperdense sylvian fissure MCA “dot” sign. A CT marker of acute ischemia. Stroke 32:84–88

    CAS  PubMed  Google Scholar 

  22. Goldmakher GV et al (2009) Hyperdense basilar artery sign on unenhanced CT predicts thrombus and outcome in acute posterior circulation stroke. Stroke 40:134–139

    PubMed  Google Scholar 

  23. Berkhemer OA, Kamalian S, González RG, Majoie CBLM, Yoo AJ (2013) Imaging biomarkers for intra-arterial stroke therapy. Cardiovasc Eng Technol 4:339–351

    PubMed  PubMed Central  Google Scholar 

  24. Barber PA et al (1999) Identification of major ischemic change: diffusion-weighted imaging versus computed tomography. Stroke 30:2059–2065

    CAS  PubMed  Google Scholar 

  25. Sanossian N et al (2009) Angiography reveals that fluid-attenuated inversion recovery vascular hyperintensities are due to slow flow, not thrombus. Am J Neuroradiol 30:564–568

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Caplan LR (2015) Lacunar infarction and small vessel disease: pathology and pathophysiology. J Stroke 17:2

    PubMed  PubMed Central  Google Scholar 

  27. Torvik A (1984) The pathogenesis of watershed infarcts in the brain. Stroke 15:221–223

    CAS  PubMed  Google Scholar 

  28. Momjian-Mayor I, Baron JC (2005) The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies. Stroke 36:567–577

    PubMed  Google Scholar 

  29. Liu H, Chu J, Zhang L, Yan Z, Zhou S (2016) Early carotid artery stenting for cerebral watershed infarction is safe and effective: a retrospective study. Eur Neurol 76:256–260

    CAS  PubMed  Google Scholar 

  30. Liu H et al (2016) Clinical comparison of outcomes of early versus delayed carotid artery stenting for symptomatic cerebral watershed infarction due to stenosis of the proximal internal carotid artery. Biomed Res Int 2016:1–7

    Google Scholar 

  31. Kidwell CS et al (1999) Diffusion MRI in patients with transient ischemic attacks. Stroke 30:1174–1180

    CAS  PubMed  Google Scholar 

  32. Crisostomo RA, Garcia MM, Tong DC (2003) Detection of diffusion-weighted MRI abnormalities in patients with transient ischemic attack: correlation with clinical characteristics. Stroke 34(4):932–937

    PubMed  Google Scholar 

  33. Prabhakaran S, Chong JY, Sacco RL (2007) Impact of abnormal diffusion-weighted imaging results on short-term outcome following transient ischemic attack. Arch Neurol 64:1105

    PubMed  Google Scholar 

  34. Song B et al (2015) Validation of the RRE-90 scale to predict stroke risk after transient symptoms with infarction: a prospective cohort study. PLoS One 10:1–11

    Google Scholar 

  35. Johnston SC et al (2007) Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet 369:283–292

    PubMed  Google Scholar 

  36. Ay H et al (2010) A score to predict early risk of recurrence after ischemic stroke. Neurology 74:128–135

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheehan OC et al (2010) Population-based study of ABCD 2 score, carotid stenosis, and atrial fibrillation for early stroke prediction after transient ischemic attack. Stroke 41:844–850

    PubMed  Google Scholar 

  38. Josephson SA, Sidney S, Pham TN, Bernstein AL, Johnston SC (2008) Higher ABCD2score predicts patients most likely to have true transient ischemic attack. Stroke 39:3096–3098

    PubMed  Google Scholar 

  39. Albers G, Caplan L, Easton J (2002) Transient ischemic attack – proposal for a new definition. N Engl J Med 347:1713–1716

    PubMed  Google Scholar 

  40. Easton JD et al (2009) Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardio. Stroke 40:2276–2293

    PubMed  Google Scholar 

  41. Powers WJ et al (2018) 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49:e46–e110

    PubMed  Google Scholar 

  42. Mǎrgǎritescu O et al (2008) Histopathological changes in acute ischemic stroke. Rom J Morphol Embryol 50:327–339

    Google Scholar 

  43. Paciaroni M et al (2008) Early hemorrhagic transformation of brain infarction: rate, predictive factors, and influence on clinical outcome: results of a prospective multicenter study. Stroke 39:2249–2256

    PubMed  Google Scholar 

  44. Hacke W et al (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 274:1017–1025

    CAS  PubMed  Google Scholar 

  45. Wahlgren N et al (2008) Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: safe implementation of thrombolysis in Stroke-MOnitoring STudy (SITS-MOST). Stroke 39:3316–3322

    PubMed  Google Scholar 

  46. Meisterernst J et al (2017) Focal T2 and FLAIR hyperintensities within the infarcted area: a suitable marker for patient selection for treatment? PLoS One 12:1–10

    Google Scholar 

  47. Kalinin MN, Khasanova DR, Ibatullin MM (2017) The hemorrhagic transformation index score: a prediction tool in middle cerebral artery ischemic stroke. BMC Neurol 17:1–16

    Google Scholar 

  48. Charidimou A, Shoamanesh A (2016) Clinical relevance of microbleeds in acute stroke thrombolysis: comprehensive meta-analysis. Neurology 87:1534–1541

    CAS  PubMed  Google Scholar 

  49. Tsivgoulis G et al (2016) Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden ameta-analysis. JAMA Neurol 73:675–683

    PubMed  Google Scholar 

  50. Lansberg MG et al (2007) Risk factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke 38:2275–2278

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Christoforidis GA, Mohammad Y, Kehagias D, Avutu B, Slivka AP (2005) Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol 26(7):1789–1797

    PubMed  PubMed Central  Google Scholar 

  52. Kucinski T et al (2003) Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 45:11–18

    CAS  PubMed  Google Scholar 

  53. Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12:723–725

    CAS  PubMed  Google Scholar 

  54. Symon L (1985) Flow thresholds in brain ischaemia and the effects of drugs. Br J Anaesth 57:34–43

    CAS  PubMed  Google Scholar 

  55. Higashida RT, Furlan AJ, Assessment T (2003) Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 34:2774

    Google Scholar 

  56. Bandera E et al (2006) Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke 37:1334–1339

    PubMed  Google Scholar 

  57. Tisserand M et al (2016) Does diffusion lesion volume above 70 mL preclude favorable outcome despite post-thrombolysis recanalization? Stroke 47:1005–1011

    PubMed  Google Scholar 

  58. Lyden PD, Zweifler R, Mahdavi Z, Lonzo L (1994) A rapid, reliable, and valid method for measuring infarct and brain compartment volumes from computed tomographic scans. Stroke 25:2421–2428

    CAS  PubMed  Google Scholar 

  59. Campbell BCV et al (2013) Advanced imaging improves prediction of hemorrhage after stroke thrombolysis. Ann Neurol 73:510–519

    PubMed  PubMed Central  Google Scholar 

  60. Wu B et al (2018) Optimal delay time of CT perfusion for predicting cerebral parenchymal hematoma after intra-arterial tPA treatment. Front Neurol 9:1–8

    Google Scholar 

  61. Yassi N et al (2013) Prediction of poststroke hemorrhagic transformation using computed tomography perfusion. Stroke 44:3039–3043

    PubMed  Google Scholar 

  62. Jain AR et al (2013) Association of CT perfusion parameters with hemorrhagic transformation in acute ischemic stroke. Am J Neuroradiol 34:1895–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Straka M, Albers GW, Bammer R (2010) Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 32:1024–1037

    PubMed  PubMed Central  Google Scholar 

  64. Nogueira RG et al (2018) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378(1):11–21. https://doi.org/10.1056/NEJMoa1706442

    Article  PubMed  Google Scholar 

  65. Haussen DC et al (2016) Automated CT perfusion ischemic core volume and noncontrast CT ASPECTS (Alberta stroke program early CT score): correlation and clinical outcome prediction in large vessel stroke. Stroke 47:2318–2322

    PubMed  Google Scholar 

  66. Berkhemer OA et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372:11–20

    PubMed  Google Scholar 

  67. Goyal M et al (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372:1019–1030

    CAS  PubMed  Google Scholar 

  68. Campbell BCV et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018

    CAS  PubMed  Google Scholar 

  69. Saver JL et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372:2285–2295

    CAS  PubMed  Google Scholar 

  70. Jovin TG et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372:2296–2306

    CAS  PubMed  Google Scholar 

  71. Achit H et al (2017) Cost-effectiveness of thrombectomy in patients with acute ischemic stroke: the THRACE randomized controlled trial. Stroke 48:2843–2847

    PubMed  Google Scholar 

  72. Goyal M et al (2016) Endovascular therapy in acute ischemic stroke: challenges and transition from trials to bedside. Stroke 47:548–553

    PubMed  Google Scholar 

  73. Borst J et al (2017) Value of thrombus CT characteristics in patients with acute ischemic stroke. Am J Neuroradiol 38:1758–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yoo AJ et al (2012) Infarct volume is a pivotal biomarker after intra-arterial stroke therapy. Stroke 43:1323–1330

    CAS  PubMed  Google Scholar 

  75. Bang OY et al (2011) Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke 42:693–699

    PubMed  PubMed Central  Google Scholar 

  76. Bang OY, Goyal M, Liebeskind DS (2015) Collateral circulation in ischemic stroke: assessment tools and therapeutic strategies. Stroke 46:3302–3309

    PubMed  PubMed Central  Google Scholar 

  77. Sylaja PN et al (2007) Acute ischemic lesions of varying ages predict risk of ischemic events in stroke/TIA patients. Neurology 68:415–419

    CAS  PubMed  Google Scholar 

  78. Hill MD et al (2014) Alberta stroke program early computed tomography score to select patients for endovascular treatment interventional management of stroke (IMS)-III trial. Stroke 45:444–449

    PubMed  Google Scholar 

  79. Marks MP et al (2018) Endovascular treatment in the DEFUSE 3 study. Stroke 022147:118. https://doi.org/10.1161/STROKEAHA.118.022147

    Article  Google Scholar 

  80. Albers GW et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378:708–718

    PubMed  PubMed Central  Google Scholar 

  81. Saposnik G, Strbian D (2018) Enlightenment and challenges offered by DAWN trial (DWI or CTP assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention with trevo). Stroke 49:498–500

    PubMed  Google Scholar 

  82. Tomlinson BE, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356

    CAS  PubMed  Google Scholar 

  83. Fazekas F et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol 149:351–356

    CAS  Google Scholar 

  84. Fazekas F et al (1993) Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 43:1683–1689

    CAS  PubMed  Google Scholar 

  85. Wardlaw JM et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12:822–838

    PubMed  PubMed Central  Google Scholar 

  86. Smith EE et al (2017) Prevention of stroke in patients with silent cerebrovascular disease: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48:e44–e71

    PubMed  Google Scholar 

  87. Field TS, Benavente OR (2011) Penetrating artery territory pontine infarction. Rev Neurol Dis 8:30–38

    PubMed  Google Scholar 

  88. Kuller LH et al (2004) White matter hyperintensity on cranial magnetic resonance imaging: a predictor of stroke. Stroke 35:1821–1825

    PubMed  Google Scholar 

  89. Pantoni L, Garcia JH (1995) The significance of cerebral white matter abnormalities 100 years after Binswanger’s report. A review. Stroke 26:1293–1301

    CAS  PubMed  Google Scholar 

  90. De Bresser J et al (2018) White matter hyperintensity shape and location feature analysis on brain MRI; proof of principle study in patients with diabetes. Sci Rep 8:1–10

    Google Scholar 

  91. Brun A, Englund E (1986) A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol 19:253–262

    CAS  PubMed  Google Scholar 

  92. Williamson W et al (2018) Association of cardiovascular risk factors with MRI indices of cerebrovascular structure and function and white matter hyperintensities in young adults. JAMA 320:665

    PubMed  PubMed Central  Google Scholar 

  93. O’Sullivan M et al (2002) Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology 59:321–326

    PubMed  Google Scholar 

  94. Moustafa RR et al (2011) Microembolism versus hemodynamic impairment in rosary-like deep watershed infarcts: a combined positron emission tomography and transcranial doppler study. Stroke 42:3138–3143

    PubMed  Google Scholar 

  95. Gupta A et al (2016) Silent brain infarction and risk of future stroke: a systematic review and meta-analysis. Stroke 47:719–725

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Baradaran H et al (2016) Silent brain infarction in patients with asymptomatic carotid artery atherosclerotic disease. Stroke 47:1368–1370

    PubMed  Google Scholar 

  97. Filippi M et al (2016) MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 15:292–303

    PubMed  PubMed Central  Google Scholar 

  98. McDonald WI et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 50:121–127

    CAS  PubMed  Google Scholar 

  99. Leary M, Saver J (2001) Incidence of silent stroke in the United States. Stroke 32:P134

    Google Scholar 

  100. Weber R et al (2012) Risk of recurrent stroke in patients with silent brain infarction in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) imaging substudy. Stroke 43:350–355

    PubMed  PubMed Central  Google Scholar 

  101. Gomori JM, Grossman RI (1988) Mechanisms responsible for the MR appearance and evolution of intracranial hemorrhage. Radiographics 8:427–440

    CAS  PubMed  Google Scholar 

  102. Greenberg SM et al (2009) Cerebral microbleeds: a field guide to their detection and interpretation. Lancet Neurol 8:165–174

    PubMed  PubMed Central  Google Scholar 

  103. Vernooij MW et al (2008) Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 70:1208–1214

    CAS  PubMed  Google Scholar 

  104. Fazekas F et al (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2∗-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol 20:637–642

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stam J (2005) Thrombosis of the cerebral veins and sinuses. N Engl J Med 352:1791–1798

    CAS  PubMed  Google Scholar 

  106. Canhão P et al (2005) Causes and predictors of death in cerebral venous thrombosis. Stroke 36:1720–1725

    PubMed  Google Scholar 

  107. Saposnik G et al (2011) Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:1158–1192

    PubMed  Google Scholar 

  108. Kumar DR, Hanlin ER, Glurich I, Mazza JJ, Yale SH (2010) Virchow’s contribution to the understanding of thrombosis and cellular biology. Clin Med Res 8:168–172

    PubMed  PubMed Central  Google Scholar 

  109. Janghorbani M et al (2008) Cerebral vein and dural sinus thrombosis in adults in Isfahan, Iran: frequency and seasonal variation. Acta Neurol Scand 117:117–121

    CAS  PubMed  Google Scholar 

  110. Yu W et al (2009) Hypoplasia or occlusion of the ipsilateral cranial venous drainage is associated with early fatal edema of middle cerebral artery infarction. Stroke 40:3736–3739

    PubMed  Google Scholar 

  111. Ali SF et al (2014) The telestroke mimic (TM)-score: a prediction rule for identifying stroke mimics evaluated in a telestroke network. J Am Heart Assoc 3:14–16

    Google Scholar 

  112. Lekoubou A, Sin DI, Smock A, Ozark S (2018) Incidence of stroke mimics and post R-tpa hemorrhage in the era of telemedicine. Stroke 47:AWP335

    Google Scholar 

  113. Pavlovic AM et al (2010) Brain imaging in transient ischemic attack—redefining TIA. J Clin Neurosci 17:1105–1110

    PubMed  Google Scholar 

  114. Fisher CM (1980) Late-life migraine accompaniments as a cause of unexplained transient ischemic attacks. Can J Neurol Sci 7:9–17

    CAS  PubMed  Google Scholar 

  115. Knierim E et al (2011) Recurrent stroke due to a novel voltage sensor mutation in cav2.1 responds to verapamil. Stroke 42:14–17

    Google Scholar 

  116. Prokop M, Galanski M (2001) Spiral and multislice computed tomography of the body. AM J Roentgenol 181(8):1558

    Google Scholar 

  117. Alemany Ripoll M, Stenborg A, Sonninen P, Terent A, Raininko R et al (2004) Detection and appearance of intraparenchymal haematomas of the brain at 1.5 T with spin-echo, FLAIR and GE sequences: poor relationship to the age of the haematoma. Neuroradiology 46:435–443

    CAS  PubMed  Google Scholar 

  118. Furlan A et al (1999) Intra-arterial prourokinase for acute ischemic stroke. JAMA 282:2003

    CAS  PubMed  Google Scholar 

  119. Kidwell CS et al (2013) A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 368:914–923

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Weissman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weissman, J.D., Boiser, J.C., Krebs, C., Ponomarev, G.V. (2020). Imaging Biomarkers: Keys to Decision-Making in Stroke. In: Peplow, P.V., Martinez, B., Dambinova, S.A. (eds) Stroke Biomarkers. Neuromethods, vol 147. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9682-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9682-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9681-0

  • Online ISBN: 978-1-4939-9682-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics