Skip to main content

Detection of Phytochrome Phosphorylation in Plants

  • Protocol
  • First Online:
Phytochromes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2026))

Abstract

Posttranslational modification (PTM) of proteins occurs during or after translation and in most cases means covalent binding of a functional group to certain amino acid side chains. Among PTMs, phosphorylation is extensively studied for decades. During phosphorylation, a phosphate group is added to the target residue that is dominantly serine, threonine, and tyrosine in eukaryotes. The phosphate group attachment is catalyzed by kinases, whereas the removal of phosphate (dephosphorylation) is performed by phosphatases. Phosphorylation of phytochrome photoreceptors alters light signaling in multiple ways, thus the examination of this PTM is an expanding aspect of light signaling research. Although this chapter presents methods for detecting phosphorylated phytochrome B molecules, it can be applied on other phytochrome species. The first presented protocol of this chapter shows how the phosphorylation state of phytochrome photoreceptors can be monitored in a modified polyacrylamide gel electrophoresis system. The second protocol describes in detail how phosphorylated amino acids of a target molecule can be identified using mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127–E130

    Article  CAS  Google Scholar 

  2. Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26:676–687

    Article  CAS  Google Scholar 

  3. Wong YS, Cheng HC, Walsh DA, Lagarias JC (1986) Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes. J Biol Chem 261:12089–12097

    Article  CAS  Google Scholar 

  4. Stockhaus J, Nagatani A, Halfter U, Kay S, Furuya M, Chua NH (1992) Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity. Genes Dev 6:2364–2372

    Article  CAS  Google Scholar 

  5. Kim JI, Shen Y, Han YJ, Park JE, Kirchenbauer D, Soh MS, Nagy F, Schafer E, Song PS (2004) Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. Plant Cell 16:2629–2640

    Article  CAS  Google Scholar 

  6. Han YJ, Kim HS, Kim YM, Shin AY, Lee SS, Bhoo SH, Song PS, Kim JI (2010) Functional characterization of phytochrome autophosphorylation in plant light signaling. Plant Cell Physiol 51:596–609

    Article  CAS  Google Scholar 

  7. Schneider-Poetsch HA, Braun B, Marx S, Schaumburg A (1991) Phytochromes and bacterial sensor proteins are related by structural and functional homologies. Hypothesis on phytochrome-mediated signal-transduction. FEBS Lett 281:245–249

    Article  CAS  Google Scholar 

  8. Yeh KC, Lagarias JC (1998) Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci U S A 95:13976–13981

    Article  CAS  Google Scholar 

  9. Shin AY, Han YJ, Baek A, Ahn T, Kim SY, Nguyen TS, Son M, Lee KW, Shen Y, Song PS, Kim JI (2016) Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat Commun 7:11545

    Article  CAS  Google Scholar 

  10. Nito K, Wong CC, Yates JR 3rd, Chory J (2013) Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep 3:1970–1979

    Article  CAS  Google Scholar 

  11. Medzihradszky M, Bindics J, Adam E, Viczian A, Klement E, Lorrain S, Gyula P, Merai Z, Fankhauser C, Medzihradszky KF, Kunkel T, Schafer E, Nagy F (2013) Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell 25:535–544

    Article  CAS  Google Scholar 

  12. Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM (2002) A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell 14:3043–3056

    Article  CAS  Google Scholar 

  13. Ryu JS, Kim JI, Kunkel T, Kim BC, Cho DS, Hong SH, Kim SH, Fernandez AP, Kim Y, Alonso JM, Ecker JR, Nagy F, Lim PO, Song PS, Schafer E, Nam HG (2005) Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell 120:395–406

    Article  CAS  Google Scholar 

  14. Phee BK, Kim JI, Shin DH, Yoo J, Park KJ, Han YJ, Kwon YK, Cho MH, Jeon JS, Bhoo SH, Hahn TR (2008) A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome. Biochem J 415:247–255

    Article  CAS  Google Scholar 

  15. Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284:1539–1541

    Article  CAS  Google Scholar 

  16. Colon-Carmona A, Chen DL, Yeh KC, Abel S (2000) Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol 124:1728–1738

    Article  CAS  Google Scholar 

  17. Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008) Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20:1586–1602

    Article  CAS  Google Scholar 

  18. Shen Y, Zhou Z, Feng S, Li J, Tan-Wilson A, Qu LJ, Wang H, Deng XW (2009) Phytochrome A mediates rapid red light-induced phosphorylation of Arabidopsis FAR-RED ELONGATED HYPOCOTYL1 in a low fluence response. Plant Cell 21:494–506

    Article  CAS  Google Scholar 

  19. Chen F, Shi X, Chen L, Dai M, Zhou Z, Shen Y, Li J, Li G, Wei N, Deng XW (2012) Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis. Plant Cell 24:1907–1920

    Article  CAS  Google Scholar 

  20. Ni W, Xu SL, Chalkley RJ, Pham TN, Guan S, Maltby DA, Burlingame AL, Wang ZY, Quail PH (2013) Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis. Plant Cell 25:2679–2698

    Article  CAS  Google Scholar 

  21. Yue J, Qin Q, Meng S, Jing H, Gou X, Li J, Hou S (2016) TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis. Plant Physiol 170:1381–1397

    Article  CAS  Google Scholar 

  22. Kinoshita E, Takahashi M, Takeda H, Shiro M, Koike T (2004) Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans 8:1189–1193

    Article  Google Scholar 

  23. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    Article  CAS  Google Scholar 

  24. Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11:319–323

    Article  CAS  Google Scholar 

  25. Kinoshita-Kikuta E, Kinoshita E, Koike T (2015) Neutral Phosphate-Affinity SDS-PAGE system for profiling of protein phosphorylation. Methods Mol Biol 1295:323–354

    Article  CAS  Google Scholar 

  26. Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D (2014) P(3)DB 3.0: From plant phosphorylation sites to protein networks. Nucleic Acids Res 42(Database issue):D1206–D1213

    Article  CAS  Google Scholar 

  27. Liu Q, Wang Q, Deng W, Wang X, Piao M, Cai D, Li Y, Barshop WD, Yu X, Zhou T, Liu B, Oka Y, Wohlschlegel J, Zuo Z, Lin C (2017) Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat Commun 8:15234

    Article  Google Scholar 

  28. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  CAS  Google Scholar 

  29. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  Google Scholar 

  30. Baker PR, Trinidad JC, Chalkley RJ (2011) Modification site localization scoring integrated into a search engine. Mol Cell Proteomics 10:M111.008078

    Article  Google Scholar 

  31. Kinoshita E, Kinoshita-Kikuta E, Karata K, Kawano T, Nishiyama A, Yamato M, Koike T (2017) Specific glutamic acid residues in targeted proteins induce exaggerated retardations in Phos-tag SDS-PAGE migration. Electrophoresis 38:1139–1146

    Article  CAS  Google Scholar 

  32. Yonan CR, Duong PT, Chang FN (2005) High-efficiency staining of proteins on different blot membranes. Anal Biochem 338:159–161

    Article  CAS  Google Scholar 

  33. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292

    Article  CAS  Google Scholar 

  34. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10:5354–5362

    Article  CAS  Google Scholar 

  35. Biemann K (1990) Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol 193:886–887

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Katalin F. Medzihradszky for critical reading of the manuscript. This work was supported by grants from the Economic Development and Innovation Operative Program (GINOP-2.3.2-15-2016-00015 and GINOP-2.3.2-15-2016-00032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Viczián .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klement, E., Gyula, P., Viczián, A. (2019). Detection of Phytochrome Phosphorylation in Plants. In: Hiltbrunner, A. (eds) Phytochromes. Methods in Molecular Biology, vol 2026. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9612-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9612-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9611-7

  • Online ISBN: 978-1-4939-9612-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics