Skip to main content

High-Content Analyses of Vaccinia Plaque Formation

  • Protocol
  • First Online:
Vaccinia Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2023))

Abstract

Vaccinia virus plaque assays are employed for quantification of virus titer through serial dilution of virus on a monolayer of cells. Once the virus titer is diluted enough to allow for only few cells of the monolayer to be infected, clonal spread of infection can be detected by observing the lesion in the cell monolayer or using virus-specific staining methods. Beyond simple titration, plaque formation bares priceless underlying information about subtle virus-host interactions and their impact on virus spread during multiple rounds of infection. These include virus infectivity, mode of virus spread, virus replication rate, and spatiotemporal spread efficacy. How this underlying information can be harnessed using a high-content imaging setup is discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Herelle F (1926) The bacteriophage and its behavior. The Williams & Wilkins Company, Baltimore, MD

    Google Scholar 

  2. Dulbecco R, Vogt M (1953) Some problems of animal virology as studied by the plaque technique. Cold Spring Harb Symp Quant Biol 18:273–279

    Article  CAS  Google Scholar 

  3. Mothes W, Sherer NM, Jin J, Zhong P (2010) Virus cell-to-cell transmission. J Virol 84:8360–8368

    Article  CAS  Google Scholar 

  4. Sattentau Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6:815–826

    Article  CAS  Google Scholar 

  5. Yakimovich A, Gumpert H, Burckhardt CJ, Lütschg VA, Jurgeit A, Sbalzarini IF et al (2012) Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model. J Virol 86:10123–10137

    Article  CAS  Google Scholar 

  6. Burckhardt CJ, Greber UF (2009) Virus movements on the plasma membrane support infection and transmission between cells. PLoS Pathog 5(11):e1000621

    Article  Google Scholar 

  7. Bär S, Daeffler L, Rommelaere J, Nüesch JP (2008) Vesicular egress of non-enveloped lytic parvoviruses depends on gelsolin functioning. PLoS Pathog 4(8):e1000126

    Article  Google Scholar 

  8. Sanderson CM, Way M, Smith GL (1998) Virus-induced cell motility. J Virol 72(2):1235–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Doceul V, Hollinshead M, van der Linden L, Smith GL (2010) Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science (New York, NY) 327:873–876

    Article  CAS  Google Scholar 

  10. Yakimovich A, Andriasyan V, Witte R, Wang I-H, Prasad V, Suomalainen M, Greber UF (2015) Plaque2. 0—a high-throughput analysis framework to score virus-cell transmission and clonal cell expansion. PLoS One 10(9):e0138760

    Article  Google Scholar 

  11. Yakimovich A, Yakimovich Y, Schmid M, Mercer J, Sbalzarini IF, Greber UF (2016) Infectio: a generic framework for computational simulation of virus transmission between cells. mSphere 1(1):e00078–e00015

    Article  CAS  Google Scholar 

  12. Russell WC (1962) A sensitive and precise plaque assay for herpes virus. Nature 195(4845):1028–1029

    Article  CAS  Google Scholar 

  13. Yakimovich A, Gumpert H, Burckhardt CJ, Lutschg VA, Jurgeit A, Sbalzarini IF, Greber UF (2012) Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model. J Virol 86(18):10123–10137

    Article  CAS  Google Scholar 

  14. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151:182–195

    Article  CAS  Google Scholar 

  15. Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article  CAS  Google Scholar 

  16. Smith GL, Vanderplasschen A, Law M (2002) The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83(12):2915–2931

    Article  CAS  Google Scholar 

  17. Moss B (2013) Poxviridae. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology, vol 1, 6th edn. Lippincott Williams & Wilkins, a Wolters Kluwer business, Philadelphia, PA, p 2664

    Google Scholar 

  18. Condit RC, Moussatche N, Traktman P (2006) In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res 66:31–124

    Article  CAS  Google Scholar 

  19. Roberts KL, Smith GL (2008) Vaccinia virus morphogenesis and dissemination. Trends Microbiol 16(10):472–479

    Article  CAS  Google Scholar 

  20. Blasco R, Sisler J, Moss B (1993) Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J Virol 67(6):3319–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cudmore S, Cossart P, Griffiths G, Way M (1995) Actin-based motility of vaccinia virus. Nature 378(6557):636–638

    Article  CAS  Google Scholar 

  22. Frischknecht F, Moreau V, Röttger S, Gonfloni S, Reckmann I, Superti-Furga G, Way M (1999) Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401(6756):926–929

    Article  CAS  Google Scholar 

  23. McIntosh A, Smith GL (1996) Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J Virol 70(1):272–281

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolffe EJ, Weisberg AS, Moss B (1998) Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 244(1):20–26

    Article  CAS  Google Scholar 

  25. Valderrama F, Cordeiro JV, Schleich S, Frischknecht F, Way M (2006) Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science 311(5759):377–381

    Article  CAS  Google Scholar 

  26. Doceul V, Hollinshead M, Breiman A, Laval K, Smith GL (2012) Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of superinfecting virions. J Gen Virol 93(Pt 9):1876–1886

    Article  CAS  Google Scholar 

  27. Yakimovich A, Huttunen M, Zehnder B, Coulter LJ, Gould V, Schneider C, Kopf M, McInnes CJ, Greber UF, Mercer J (2017) Inhibition of poxvirus gene expression and genome replication by bisbenzimide derivatives. J Virol 91(18):e00838–e00817

    Article  CAS  Google Scholar 

  28. Fillbrunn A, Dietz C, Pfeuffer J, Rahn R, Landrum GA, Berthold MR (2017) KNIME for reproducible cross-domain analysis of life science data. J Biotechnol 261:149–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Artur Yakimovich or Jason Mercer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yakimovich, A., Mercer, J. (2019). High-Content Analyses of Vaccinia Plaque Formation. In: Mercer, J. (eds) Vaccinia Virus. Methods in Molecular Biology, vol 2023. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9593-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9593-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9592-9

  • Online ISBN: 978-1-4939-9593-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics