Skip to main content

Measuring Synthesis and Degradation of MHC Class I Molecules

  • Protocol
  • First Online:
Antigen Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1988))

Abstract

Major histocompatibility complex (MHC) class I molecules function to present pathogen derived peptides to cytotoxic T cells and act as ligands for Natural Killer cells, thus alerting the immune system to the presence of invading pathogens. However, some MHC class I molecules, most notably HLA-B27, can be strongly associated with autoimmune diseases. In addition, the MHC class I pathway is a target for numerous viral evasion strategies Understanding not only the antigen presenting functions, but also the biosynthesis and the degradation pathways of MHC class I molecules has therefore become important in determining their role in pathogen and autoimmune related diseases. Here, we describe how using epitope tagged MHC class I molecules can aid in the analysis of MHC class I molecule biosynthesis and degradation as well as complementary studies using conventional conformationally specific antibodies. Coupled together with pharmacological manipulation which can target both biosynthetic and degradative pathways, this offers a powerful tool in analyzing MHC class I molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512

    Article  CAS  Google Scholar 

  2. Bjorkman PJ, Parham P (1990) Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 59:253–288

    Article  CAS  Google Scholar 

  3. Falk K, Rotzschke O, Rammensee HG (1990) Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348:248–251

    Article  CAS  Google Scholar 

  4. Rotzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, Jung G, Rammensee HG (1990) Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348:252–254

    Article  CAS  Google Scholar 

  5. Lewis JW, Elliott T (1998) Evidence for successive peptide binding and quality control stages during MHC class I assembly. Curr Biol 8:717–720

    Article  CAS  Google Scholar 

  6. Williams AP, Peh CA, Purcell AW, McCluskey J, Elliott T (2002) Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16:509–520

    Article  CAS  Google Scholar 

  7. Cresswell P (2005) Antigen processing and presentation. Immunol Rev 207:5–7

    Article  Google Scholar 

  8. Antoniou AN, Powis SJ, Elliott T (2003) Assembly and export of MHC class I peptide ligands. Curr Opin Immunol 15:75–81

    Article  CAS  Google Scholar 

  9. Boyle LH, Hermann C, Boname JM, Porter KM, Patel PA, Burr ML, Duncan LM, Harbour ME, Rhodes DA, Skjodt K, Lehner PJ, Trowsdale J (2013) Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc Natl Acad Sci U S A 110:3465–3470

    Article  CAS  Google Scholar 

  10. Neerincx A, Hermann C, Antrobus R, van Hateren A, Cao H, Trautwein N, Stevanovic S, Elliott T, Deane JE, Boyle LH (2017) TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. eLife 6

    Google Scholar 

  11. Chang SC, Momburg F, Bhutani N, Goldberg AL (2005) The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism. Proc Natl Acad Sci U S A 102:17107–17112

    Article  CAS  Google Scholar 

  12. Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, Lepelletier Y, Greer F, Schomburg L, Fruci D, Niedermann G, van Endert PM (2005) Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 6:689–697

    Article  CAS  Google Scholar 

  13. Harris MR, Yu YY, Kindle CS, Hansen TH, Solheim JC (1998) Calreticulin and calnexin interact with different protein and glycan determinants during the assembly of MHC class I. J Immunol 160:5404–5409

    CAS  PubMed  Google Scholar 

  14. Ford S, Antoniou A, Butcher GW, Powis SJ (2004) Competition for access to the rat major histocompatibility complex class I peptide-loading complex reveals optimization of peptide cargo in the absence of transporter associated with antigen processing (TAP) association. J Biol Chem 279:16077–16082

    Article  CAS  Google Scholar 

  15. Hughes EA, Hammond C, Cresswell P (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci U S A 94:1896–1901

    Article  CAS  Google Scholar 

  16. Stagg HR, Thomas M, van den Boomen D, Wiertz EJ, Drabkin HA, Gemmill RM, Lehner PJ (2009) The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J Cell Biol 186:685–692

    Article  CAS  Google Scholar 

  17. Burr ML, Cano F, Svobodova S, Boyle LH, Boname JM, Lehner PJ (2011) HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation. Proc Natl Acad Sci U S A 108:2034–2039

    Article  CAS  Google Scholar 

  18. Cormier JH, Tamura T, Sunryd JC, Hebert DN (2009) EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 34:627–633

    Article  CAS  Google Scholar 

  19. Guiliano DB, Fussell H, Lenart I, Tsao E, Nesbeth D, Fletcher AJ, Campbell EC, Yousaf N, Williams S, Santos S, Cameron A, Towers GJ, Kellam P, Hebert DN, Gould KG, Powis SJ, Antoniou AN (2014) Endoplasmic reticulum degradation-enhancing alpha-mannosidase-like protein 1 targets misfolded HLA-B27 dimers for endoplasmic reticulum-associated degradation. Arthritis Rheumatol 66:2976–2988

    Article  CAS  Google Scholar 

  20. Kincaid MM, Cooper AA (2007) ERADicate ER stress or die trying. Antioxid Redox Signal 9:2373–2387

    Article  CAS  Google Scholar 

  21. Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS (2008) The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 15:1460–1471

    Article  CAS  Google Scholar 

  22. Park B, Lee S, Kim E, Chang S, Jin M, Ahn K (2001) The truncated cytoplasmic tail of HLA-G serves a quality-control function in post-ER compartments. Immunity 15:213–224

    Article  CAS  Google Scholar 

  23. Molinari M, Galli C, Piccaluga V, Pieren M, Paganetti P (2002) Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158:247–257

    Article  CAS  Google Scholar 

  24. Antoniou AN, Lenart I, Guiliano DB (2011) Pathogenicity of misfolded and dimeric HLA-B27 molecules. Int J Rheumatol 2011:486856

    Article  Google Scholar 

  25. Welihinda AA, Tirasophon W, Kaufman RJ (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 7:293–300

    CAS  PubMed  Google Scholar 

  26. Barnstable CJ, Bodmer WF, Brown G, Galfre G, Milstein C, Williams AF, Ziegler A (1978) Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 14:9–20

    Article  CAS  Google Scholar 

  27. Sakaguchi K, Ono R, Tsujisaki M, Richiardi P, Carbonara A, Park MS, Tonai R, Terasaki PI, Ferrone S (1988) Anti-HLA-B7,B27,Bw42,Bw54,Bw55,Bw56, Bw67,Bw73 monoclonal antibodies: specificity, idiotypes, and application for a double determinant immunoassay. Hum Immunol 21:193–207

    Article  CAS  Google Scholar 

  28. Parham P, Bodmer WF (1978) Monoclonal antibody to a human histocompatibility alloantigen, HLA-A2. Nature 276:397–399

    Article  CAS  Google Scholar 

  29. Stam NJ, Spits H, Ploegh HL (1986) Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol 137:2299–2306

    CAS  PubMed  Google Scholar 

  30. Antoniou AN, Ford S, Taurog JD, Butcher GW, Powis SJ (2004) Formation of HLA-B27 homodimers and their relationship to assembly kinetics. J Biol Chem 279:8895–8902

    Article  CAS  Google Scholar 

  31. Santos SG, Antoniou AN, Sampaio P, Powis SJ, Arosa FA (2006) Lack of tyrosine 320 impairs spontaneous endocytosis and enhances release of HLA-B27 molecules. J Immunol 176:2942–2949

    Article  CAS  Google Scholar 

  32. Schaefer MR, Williams M, Kulpa DA, Blakely PK, Yaffee AQ, Collins KL (2008) A novel trafficking signal within the HLA-C cytoplasmic tail allows regulated expression upon differentiation of macrophages. J Immunol 180:7804–7817

    Article  CAS  Google Scholar 

  33. Gruda R, Achdout H, Stern-Ginossar N, Gazit R, Betser-Cohen G, Manaster I, Katz G, Gonen-Gross T, Tirosh B, Mandelboim O (2007) Intracellular cysteine residues in the tail of MHC class I proteins are crucial for extracellular recognition by leukocyte Ig-like receptor 1. J Immunol 179:3655–3661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was in part supported by Arthritis Research UK (grant 21261; to A.N.A. and S.J.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon J. Powis or Antony N. Antoniou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Powis, S.J., Antoniou, A.N. (2019). Measuring Synthesis and Degradation of MHC Class I Molecules. In: van Endert, P. (eds) Antigen Processing. Methods in Molecular Biology, vol 1988. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9450-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9450-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9449-6

  • Online ISBN: 978-1-4939-9450-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics