Skip to main content

Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  Google Scholar 

  2. Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  CAS  Google Scholar 

  3. Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11:2607–2619

    Article  CAS  Google Scholar 

  4. Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15:602–611

    Article  CAS  Google Scholar 

  5. Stampoulis P, Ueda T, Matsumoto M, Terasawa H, Miyano K, Sumimoto H, Shimada I (2012) Atypical membrane-embedded PI(3,4)P2 binding site on p47phox PX domain revealed by NMR. J Biol Chem 287:17848–17859

    Article  CAS  Google Scholar 

  6. Ago T, Nunoi H, Ito T, Sumimoto H (1999) Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47phox, thereby activating the oxidase. J Biol Chem 274:33644–33653

    Article  CAS  Google Scholar 

  7. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    Article  CAS  Google Scholar 

  8. Yuzawa S, Suzuki NN, Fujioka Y, Ogura K, Sumimoto H, Inagaki F (2004) A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes Cells 9:443–456

    Article  CAS  Google Scholar 

  9. Yuzawa S, Ogura K, Horiuchi M, Suzuki NN, Fujioka Y, Kataoka M, Sumimoto H, Inagaki F (2004) Solution structure of the tandem Src homology 3 domains of p47phox in an autoinhibited form. J Biol Chem 279:29752–29760

    Article  CAS  Google Scholar 

  10. Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D, Sumimoto H (2003) Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci U S A 100:4474–4479

    Article  CAS  Google Scholar 

  11. Marcoux J, Man P, Petit-Haertlein I, Vivès C, Forest E, Fieschi F (2010) p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex. J Biol Chem 285:28980–28990

    Article  CAS  Google Scholar 

  12. Ueyama T, Nakakita J, Nakamura T, Kobayashi T, Kobayashi T, Son J, Sakuma M, Sakaguchi H, Leto TL, Saito N (2011) Cooperation of p40phox with p47phox for Nox2-based NADPH oxidase activation during Fcγ receptor (FcγR)-mediated phagocytosis: mechanism for acquisition of p40phox phosphatidylinositol 3-phosphate (PI(3)P) binding. J Biol Chem 286:40693–40705

    Article  CAS  Google Scholar 

  13. Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801

    Article  CAS  Google Scholar 

  14. Shmelzer Z, Karter M, Eisenstein M, Leto TL, Hadad N, Ben-Menahem D, Gitler D, Banani S, Wolach B, Rotem M, Levy R (2008) Cytosolic phospholipase A2α is targeted to the p47phox-PX domain of the assembled NADPH oxidase via a novel binding site in its C2 domain. J Biol Chem 283:31898–31908

    Article  CAS  Google Scholar 

  15. Olofsson P, Holmberg J, Tordsson J, Lu S, Akerström B, Holmdahl R (2003) Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 33:25–32

    Article  CAS  Google Scholar 

  16. Taura M, Miyano K, Minakami R, Kamakura S, Takeya R, Sumimoto H (2009) A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase. Biochem J 419:329–338

    Article  CAS  Google Scholar 

  17. Ogura K, Nobuhisa I, Yuzawa S, Takeya R, Torikai S, Saikawa K, Sumimoto H, Inagaki F (2006) NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide. J Biol Chem 281:3660–3668

    Article  CAS  Google Scholar 

  18. Mizrahi A, Berdichevsky Y, Casey PJ, Pick E (2010) A prenylated p47phox-p67phox-Rac1 chimera is a quintessential NADPH oxidase activator: membrane association and functional capacity. J Biol Chem 285:25485–25499

    Article  CAS  Google Scholar 

  19. Miyano K, Ueno N, Takeya R, Sumimoto H (2006) Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281:21857–21868

    Article  CAS  Google Scholar 

  20. Cheng G, Lambeth JD (2004) NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem 279:4737–4742

    Article  CAS  Google Scholar 

  21. Ueyama T, Lekstrom K, Tsujibe S, Saito N, Leto TL (2007) Subcellular localization and function of alternatively spliced Noxo1 isoforms. Free Radic Biol Med 42:180–190

    Article  CAS  Google Scholar 

  22. Takeya R, Taura M, Yamasaki T, Naito S, Sumimoto H (2006) Expression and function of Noxo1γ, an alternative splicing form of the NADPH oxidase organizer 1. FEBS J 273:3663–3677

    Article  CAS  Google Scholar 

  23. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278:25234–25246

    Article  CAS  Google Scholar 

  24. Ueyama T, Geiszt M, Leto TL (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26:2160–2174

    Article  CAS  Google Scholar 

  25. Yamamoto A, Takeya R, Matsumoto M, Nakayama KI, Sumimoto H (2013) Phosphorylation of Noxo1 at threonine 341 regulates its interaction with Noxa1 and the superoxide-producing activity of Nox1. FEBS J 280:5145–5159

    Article  CAS  Google Scholar 

  26. Yamamoto A, Kami K, Takeya R, Sumimoto H (2007) Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1). Biochem Biophys Res Commun 352:560–565

    Article  CAS  Google Scholar 

  27. Dutta S, Rittinger K (2010) Regulation of NOXO1 activity through reversible interactions with p22phox and NOXA1. PLoS One 5:e10478

    Article  Google Scholar 

  28. Debbabi M, Kroviarski Y, Bournier O, Gougerot-Pocidalo MA, El-Benna J, Dang PM (2013) NOXO1 phosphorylation on serine 154 is critical for optimal NADPH oxidase 1 assembly and activation. FASEB J 27:1733–1748

    Article  CAS  Google Scholar 

  29. Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 280:23328–23339

    Article  CAS  Google Scholar 

  30. Yuzawa S, Miyano K, Honbou K, Inagaki F, Sumimoto H (2009) The domain organization of p67phox, a protein required for activation of the superoxide-producing NADPH oxidase in phagocytes. J Innate Immun 1:543–555

    Article  CAS  Google Scholar 

  31. Durand D, Vivès C, Cannella D, Pérez J, Pebay-Peyroula E, Vachette P, Fieschi F (2010) NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol 169:45–53

    Article  CAS  Google Scholar 

  32. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274:25051–25060

    Article  CAS  Google Scholar 

  33. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac·GTP. Mol Cell 6:899–907

    Article  CAS  Google Scholar 

  34. Kami K, Takeya R, Sumimoto H, Kohda D (2002) Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J 21:4268–4276

    Article  CAS  Google Scholar 

  35. Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D, Nunoi H, Takeshige K, Sumimoto H (2005) A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Arch Biochem Biophys 444:185–194

    Article  CAS  Google Scholar 

  36. Ito T, Matsui Y, Ago T, Ota K, Sumimoto H (2001) Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions. EMBO J 20:3938–3946

    Article  CAS  Google Scholar 

  37. Kuribayashi F, Nunoi H, Wakamatsu K, Tsunawaki S, Sato K, Ito T, Sumimoto H (2002) The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J 21:6312–6320

    Article  CAS  Google Scholar 

  38. Massenet C, Chenavas S, Cohen-Addad C, Dagher MC, Brandolin G, Pebay-Peyroula E, Fieschi F (2005) Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains. J Biol Chem 280:13752–13761

    Article  CAS  Google Scholar 

  39. Sumimoto H, Kamakura S, Ito T (2007) Structure and function of the PB1 domain, a protein-interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE 2007:re6

    Article  Google Scholar 

  40. Maehara Y, Miyano K, Sumimoto H (2009) Role for the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases. Biochem Biophys Res Commun 379:589–593

    Article  CAS  Google Scholar 

  41. de Mendez I, Garrett MC, Adams AG, Leto TL (1994) Role of p67-phox SH3 domains in assembly of the NADPH oxidase system. J Biol Chem 269:16326–16332

    PubMed  Google Scholar 

  42. Miyano K, Sumimoto H (2012) Assessment of the role for Rho family GTPases in NADPH oxidase activation. Methods Mol Biol 827:195–212

    Article  CAS  Google Scholar 

  43. Hata K, Takeshige K, Sumimoto H (1997) Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro. Biochem Biophys Res Commun 241:226–231

    Article  CAS  Google Scholar 

  44. Han C-H, Freeman JL, Lee T, Motalebi SA, Lambeth JD (1998) Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67phox. J Biol Chem 273:16663–16668

    Article  CAS  Google Scholar 

  45. Maehara Y, Miyano K, Yuzawa S, Akimoto R, Takeya R, Sumimoto H (2010) A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase. J Biol Chem 285:31435–31445

    Article  CAS  Google Scholar 

  46. Matono R, Miyano K, Kiyohara T, Sumimoto H (2014) Arachidonic acid induces direct interaction of the p67phox–Rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem 289:24874–24884

    Article  CAS  Google Scholar 

  47. Miyano K, Sumimoto H (2007) Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Biochimie 89:1133–1144

    Article  CAS  Google Scholar 

  48. Kroviarski Y, Debbabi M, Bachoual R, Périanin A, Gougerot-Pocidalo MA, El-Benna J, Dang PM (2010) Phosphorylation of NADPH oxidase activator 1 (NOXA1) on serine 282 by MAP kinases and on serine 172 by protein kinase C and protein kinase A prevents NOX1 hyperactivation. FASEB J 24:2077–2092

    Article  CAS  Google Scholar 

  49. Streeter J, Schickling BM, Jiang S, Stanic B, Thiel WH, Gakhar L, Houtman JC, Miller FJ Jr (2014) Phosphorylation of Nox1 regulates association with NoxA1 activation domain. Circ Res 115:911–918

    Article  CAS  Google Scholar 

  50. Kunisaki Y, Nishikimi A, Tanaka Y, Takii R, Noda M, Inayoshi A, Watanabe K, Sanematsu F, Sasazuki T, Sasaki T, Fukui Y (2006) DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J Cell Biol 174:647–652

    Article  CAS  Google Scholar 

  51. Utomo A, Cullere X, Glogauer M, Swat W, Mayadas TN (2006) Vav proteins in neutrophils are required for FcγR-mediated signaling to Rac GTPases and nicotinamide adenine dinucleotide phosphate oxidase component p40(phox). J Immunol 177:6388–6397

    Article  CAS  Google Scholar 

  52. Graham DB, Robertson CM, Bautista J, Mascarenhas F, Diacovo MJ, Montgrain V, Lam SK, Cremasco V, Dunne WM, Faccio R, Coopersmith CM, Swat W (2007) Neutrophil-mediated oxidative burst and host defense are controlled by a Vav-PLCγ2 signaling axis in mice. J Clin Invest 117:3445–3452

    Article  CAS  Google Scholar 

  53. Lawson CD, Donald S, Anderson KE, Patton DT, Welch HC (2011) P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-leucyl-phenylalanine-dependent neutrophil responses. J Immunol 186:1467–1476

    Article  CAS  Google Scholar 

  54. Watanabe M, Terasawa M, Miyano K, Yanagihara T, Uruno T, Sanematsu F, Nishikimi A, Côté J-F, Sumimoto H, Fukui Y (2014) DOCK2 and DOCK5 act additively in neutrophils to regulate chemotaxis, superoxide production, and extracellular trap formation. J Immunol 193:5660–5667

    Article  CAS  Google Scholar 

  55. Miyano K, Koga H, Minakami R, Sumimoto H (2009) The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases. Biochem J 422:373–382

    Article  CAS  Google Scholar 

  56. Kwong CH, Adams AG, Leto TL (1995) Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem 270:19868–19872

    Article  CAS  Google Scholar 

  57. Suh CI, Stull ND, Li XJ, Tian W, Price MO, Grinstein S, Yaffe MB, Atkinson S, Dinauer MC (2006) The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcγIIA receptor-induced phagocytosis. J Exp Med 203:1915–1925

    Article  CAS  Google Scholar 

  58. Ellson CD, Davidson K, Ferguson GJ, O'Connor R, Stephens LR, Hawkins PT (2006) Neutrophils from p40phox−/− mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med 203:1927–1937

    Article  CAS  Google Scholar 

  59. Tian W, Li XJ, Stull ND, Ming W, Suh CI, Bissonnette SA, Yaffe MB, Grinstein S, Atkinson SJ, Dinauer MC (2008) FcγR-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome. Blood 112:3867–3877

    Article  CAS  Google Scholar 

  60. Anderson KE, Boyle KB, Davidson K, Chessa TA, Kulkarni S, Jarvis GE, Sindrilaru A, Scharffetter-Kochanek K, Rausch O, Stephens LR, Hawkins PT (2008) CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of Escherichia coli or Staphylococcus aureus is regulated by class III but not class I or II PI3Ks. Blood 112:5202–5211

    Article  CAS  Google Scholar 

  61. Ueyama T, Kusakabe T, Karasawa S, Kawasaki T, Shimizu A, Son J, Leto TL, Miyawaki A, Saito N (2008) Sequential binding of cytosolic Phox complex to phagosomes through regulated adaptor proteins: evaluation using the novel monomeric Kusabira-Green System and live imaging of phagocytosis. J Immunol 181:629–640

    Article  CAS  Google Scholar 

  62. Li XJ, Marchal CC, Stull ND, Stahelin RV, Dinauer MC (2010) p47phox Phox homology domain regulates plasma membrane but not phagosome neutrophil NADPH oxidase activation. J Biol Chem 285:35169–35179

    Article  CAS  Google Scholar 

  63. Honbou K, Minakami R, Yuzawa S, Takeya R, Suzuki NN, Kamakura S, Sumimoto H, Inagaki F (2007) Full-length p40phox structure suggests a basis for regulation mechanism of its membrane binding. EMBO J 26:1176–1186

    Article  CAS  Google Scholar 

  64. Ueyama T, Tatsuno T, Kawasaki T, Tsujibe S, Shirai Y, Sumimoto H, Leto TL, Saito N (2007) A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox. Mol Biol Cell 18:441–454

    Article  CAS  Google Scholar 

  65. Bissonnette SA, Glazier CM, Stewart MQ, Brown GE, Ellson CD, Yaffe MB (2008) Phosphatidylinositol 3-phosphate-dependent and -independent functions of p40phox in activation of the neutrophil NADPH oxidase. J Biol Chem 283:2108–2119

    Article  CAS  Google Scholar 

  66. Chessa TA, Anderson KE, Hu Y, Xu Q, Rausch O, Stephens LR, Hawkins PT (2010) Phosphorylation of threonine 154 in p40phox is an important physiological signal for activation of the neutrophil NADPH oxidase. Blood 116:6027–6036

    Article  CAS  Google Scholar 

  67. Ito T, Nakamura R, Sumimoto H, Takeshige K, Sakaki Y (1996) An SH3 domain-mediated interaction between the phagocyte NADPH oxidase factors p40phox and p47phox. FEBS Lett 385:229–232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS (Japan Society for the Promotion of Science: a Grant-in-Aid for Scientific Research on Innovative Areas “Oxygen Biology: a new criterion for integrated understanding of life” No. 26111009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Sumimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sumimoto, H., Minakami, R., Miyano, K. (2019). Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics