Skip to main content

Intersecting Stories of the Phagocyte NADPH Oxidase and Chronic Granulomatous Disease

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Neutrophils serve as the circulating cells that respond early and figure prominently in human host defense to infection and in inflammation in other settings. Optimal oxidant-dependent antimicrobial activity by neutrophils relies on the ability of stimulated phagocytes to utilize a multicomponent NADPH oxidase to generate oxidants. The frequent, severe, and often fatal infections experienced by individuals with chronic granulomatous disease (CGD), an inherited disorder in which one of the NADPH oxidase components is absent or dysfunctional, underscore the link between a functional phagocyte NADPH oxidase and robust host protection against microbial infection.

The history of the discovery and characterization of the normal neutrophil NADPH oxidase and the saga of recognizing CGD and its underlying causes together illustrate how the observations of astute clinicians and imaginative basic scientists synergize to forge new understanding of both basic cell biology and pathogenesis of human disease.

In this chapter, we review the events in the stepwise evolution of our understanding of the phagocyte NADPH oxidase, both in the context of normal human neutrophil function and in the setting of CGD. The phagocyte oxidase complex employs a heterodimeric transmembrane protein composed of gp91phox and p22phox to relay electrons from NADPH to molecular oxygen, while other cofactors contribute to localization and regulation of the activity of the assembled oxidase. The b-type cytochrome gp91phox, also known as NOX2, serves as the catalytic component of this multicomponent enzyme complex. Although many of the features of the composition and regulation of the phagocyte oxidase may apply as well to NOX2 expressed in non-phagocytes and to other members of the NOX protein family, exceptions exist and pose special challenges to investigators exploring the biology of NADPH oxidases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cross AR, Jones OT (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057(3):281–298

    CAS  PubMed  Google Scholar 

  2. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    CAS  PubMed  Google Scholar 

  3. Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N, Krause KH (2000) A mammalian H + channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287:138–142

    CAS  PubMed  Google Scholar 

  4. Nauseef WM (2018) The Neutrophil NADPH Oxidase. In: Vissers M, Hampton MB, Kettle AJ (eds) Hydrogen Peroxide Metabolism in Health and Disease. CRC Press, Boca Raton, FL, pp 237–277

    Google Scholar 

  5. Baldridge CW, Gerard RW (1933) The extra respiration of phagocytosis. Am J Phys 103:235–236

    CAS  Google Scholar 

  6. Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362

    CAS  PubMed  Google Scholar 

  7. Iyer GYN, Islam DMF, Quastel JH (1961) Biochemical aspects of phagocytosis. Nature 192:535–541

    CAS  Google Scholar 

  8. Roberts J, Quastel JH (1964) Oxidation of reduced triphosphopyridine nucleotide by guinea pig polymorphonuclear leucocytes. Nature 202:85–86

    CAS  PubMed  Google Scholar 

  9. Evans WH, Karnovsky ML (1961) A possible mechanism for the stimulation of some metabolic functions during phagocytosis. J Biol Chem 236:Pc30–Pc32

    CAS  PubMed  Google Scholar 

  10. Karnovsky ML (1962) Metabolic basis of phagocytic activity. Physiol Rev 42:143–168

    CAS  PubMed  Google Scholar 

  11. Iyer GYN, Quastel JH (1963) NADPH and NADH oxidation by guinea pig polymorphonuclear leukocytes. Can J Biochem Physiol 41:427–434

    CAS  PubMed  Google Scholar 

  12. Rossi F, Zatti M (1964) Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of phagocytizing cells. Experientia 20:21–23

    CAS  PubMed  Google Scholar 

  13. Rossi F, Zatti M (1964) Changes in the metabolic pattern of polymorphonuclear leucocytes during phagocytosis. Br J Exp Pathol 45:548–559

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gabig TG, Babior B (1979) The O2 -forming oxidase responsible for the respiratory burst in human neutrophils. J Biol Chem 254(18):9070–9074

    CAS  PubMed  Google Scholar 

  15. Babior BM, Kipnes RS (1977) Superoxide-forming enzyme from human neutrophils: evidence for a flavin requirement. Blood 50:517–524

    CAS  PubMed  Google Scholar 

  16. Gabig TG, Kipnes RS, Babior BM (1978) Solubilization of the O2 -forming activity responsible for the respiratory burst in human neutrophils. J Biol Chem 253(19):6663–6665

    CAS  PubMed  Google Scholar 

  17. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defence mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Janeway CA, Craig J, Davidson M, Downey W, Gitlin D, Sullivan JC (1954) Hypergammaglobulinemia associated with severe recurrent and chronic non-specific infection. Am J Dis Child 88:388–392

    Google Scholar 

  19. Bridges RA, Berendes H, Good RA (1959) A fatal granulomatous disease of childhood. Am J Dis Child 97:387–408

    CAS  Google Scholar 

  20. Holmes B, Quie PG, Windhorst DB, Good RA (1966) Fatal granulomatous disease of childhood. Lancet 1:1225–1228

    CAS  PubMed  Google Scholar 

  21. Holmes B, Page AR, Good RA (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46:1422–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baehner RL, Nathan DG (1968) Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N Engl J Med 278:971–976

    CAS  PubMed  Google Scholar 

  23. Baehner RL, Nathan DG (1967) Leukocyte oxidase: defective activity in chronic granulomatous disease. Science 155:835–836

    CAS  PubMed  Google Scholar 

  24. Hattori H (1961) Studies on the labile, stable Nadi oxidase and peroxidase staining reactions in the isolated particles of horse granulocyte. Nagoya J Med Sci 23:362–378

    CAS  PubMed  Google Scholar 

  25. Shinagawa Y, Tanaka C, Teroaka A, Shinagawa Y (1966) A new cytochrome in neutrophilic granules of rabbit leucocyte. J Biochem 59:622–624

    CAS  PubMed  Google Scholar 

  26. Shinagawa Y, Tanaka C, Teroaka A (1966) Electron microscopic and biochemical study of the neutrophilic granules from leucocytes. J Electron Microsc 15:81–85

    CAS  Google Scholar 

  27. Segal AW, Jones OT, Webster D, Allison AC (1978) Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet 2:446–449

    CAS  PubMed  Google Scholar 

  28. Segal AW, Jones OTG (1978) Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276:515–517

    CAS  PubMed  Google Scholar 

  29. Gabig TG, Scbervish EW, Santinga JT (1982) Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils. J Biol Chem 257(8):4114–4119

    CAS  PubMed  Google Scholar 

  30. Cross A (1999) The participation of the hemes of flavocytochrome b245 in the electron transfer process in NADPH oxidase. Blood 93:4449–4449

    CAS  PubMed  Google Scholar 

  31. Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327:717–720

    CAS  PubMed  Google Scholar 

  32. Pember SO, Heyl BL, Kinkade JM Jr, Lambeth JD (1984) Cytochrome b558 from (bovine) granulocytes. Partial purification from triton X-114 extracts and properties of the isolated cytochrome. J Biol Chem 259:10590–10595

    CAS  PubMed  Google Scholar 

  33. Bellavite P, Papini E, Zeni L, Della Bianca V, Rossi F (1985) Studies on the nature and activation of O2(−)-forming NADPH oxidase of leukocytes. Identification of a phosphorylated component of the active enzyme. Free Radic Res Commun 1(1):11–29

    CAS  PubMed  Google Scholar 

  34. Harper AM, Dunne MJ, Segal AW (1984) Purification of cytochrome b-245 from human neutrophils. Biochem J 219:519–527

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Harper AM, Chaplin MF, Segal AW (1985) Cytochrome b-245 from human neutrophils is a glycoprotein. Biochem J 227:783–788

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lutter R, van Schaik MLJ, van Zwieten R, Wever R, Roos D, Hamers MN (1985) Purification and partial characterization of the b-type cytochrome from human polymorphonuclear leukocytes. J Biol Chem 260:2237–2244

    CAS  PubMed  Google Scholar 

  37. Segal AW (1987) Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature 326:88–91

    CAS  PubMed  Google Scholar 

  38. Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1988) The quaternary structure of the plasma membrane b-type cytochrome of human granulocytes. Biochim Biophys Acta 932(1):71–83

    CAS  PubMed  Google Scholar 

  39. Parkos CA, Dinauer MC, Walker LE, Allen RA, Jesaitis AJ, Orkin SH (1988) Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochrome b. Proc Natl Acad Sci U S A 85:3319–3323

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Segal AW, Cross AR, Garcia RC, Borregaard N, Valerius NH, Soothill JF, Jones OTG (1983) Absence of cytochrome b-245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med 308:245–251

    CAS  PubMed  Google Scholar 

  41. Bohler MC, Seger RA, Mouy R, Vilmer E, Fischer A, Criscelli C (1986) A study of 24 patients with chronic granulomatous disease: a new classification by correlating respiratory burst, cytochrome b, and flavoprotein. J Clin Immunol 6:136–145

    CAS  PubMed  Google Scholar 

  42. Ohno Y, Buescher ES, Roberts R, Metcalf JA, Gallin JI (1986) Reevaluation of cytochrome b and flavin adenine dinucleotide in neutrophils from patients with chronic granulomatous disease and description of a family with probable autosomal recessive inheritance of cytochrome b deficiency. Blood 67(4):1132–1138

    CAS  PubMed  Google Scholar 

  43. Curnutte JT, Berkow RL, Roberts RL, Shurin SB, Scott PJ (1988) Chronic granulomatous disease due to a defect in the cytosolic factor required for nicotinamide adenine dinucleotide phosphate oxidase activation. J Clin Invest 81:606–610

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1987) Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Heyworth PG, Cross AR, Curnutte JT (2003) Chronic granulomatous disease. Curr Opin Immunol 15:578–584

    CAS  PubMed  Google Scholar 

  46. DeLeo FR, Burritt JB, Yu L, Jesaitis AJ, Dinauer MC, Nauseef WM (2000) Processing and maturation of flavocytochrome b 558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275(18):13986–13993

    CAS  PubMed  Google Scholar 

  47. Segal AW, Jones OTG (1980) Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease. FEBS Lett 110:111–114

    CAS  PubMed  Google Scholar 

  48. Hamers MN, deBoer M, Meerhof LJ, Weening RS, Roos D (1984) Complementation in monocyte hybrids revealing genetic heterogeneity in chronic granulomatous disease. Nature 307:553–555

    CAS  PubMed  Google Scholar 

  49. DeChatelet LR, McCall CE, Shirley PS (1980) Activation of dialysis of NAD(P)H oxidase(s) from human neutrophils. J Reticuloendothel Soc 28(6):533–545

    CAS  PubMed  Google Scholar 

  50. Heynemann RA, Vercauteren RE (1984) Activation of a NADPH-dependent oxidase from horse polymorphonuclear leukocytes in a cell-free system. J Leukoc Biol 36:751–759

    Google Scholar 

  51. Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88:213–221

    CAS  PubMed  Google Scholar 

  52. Curnutte JT (1985) Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J Clin Invest 75:1740–1743

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McPhail LC, Shirley PS, Clayton CC, Snyderman R (1985) Activation of the respiratory burst enzyme from human neutrophils in a cell-free system: evidence for a soluble cofactor. J Clin Invest 75:1735–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human neutrophils: subcellular localization and characterization of an arachidonate-activatable superoxide- generating system. J Biol Chem 262:4065–4074

    CAS  PubMed  Google Scholar 

  55. Seifert R, Rosenthal W, Schultz G (1986) Guanine nucleotides stimulate NADPH oxidase in membranes of human neutrophils. FEBS Lett 205(1):161–165

    CAS  PubMed  Google Scholar 

  56. Gabig TG, English D, Akard LP, Schell MJ (1987) Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine nucleotides and fluoride. J Biol Chem 262:1685–1690

    CAS  PubMed  Google Scholar 

  57. Ligeti E, Doussiere J, Vignais PV (1988) Activation of the O2(˙−)-generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogues of GTP. Biochemistry 27(1):193–200

    CAS  PubMed  Google Scholar 

  58. Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil NADPH oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1298

    CAS  PubMed  Google Scholar 

  59. Nunoi H, Rotrosen D, Gallin JI, Malech HL (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301

    CAS  PubMed  Google Scholar 

  60. Clark RA, Malech HL, Gallin JI, Nunoi H, Volpp BD, Pearson DW, Nauseef WM, Curnutte JT (1989) Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 321:647–652

    CAS  PubMed  Google Scholar 

  61. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21 rac1. Nature 353:668–670

    CAS  PubMed  Google Scholar 

  62. Pick E, Kroizman T, Abo A (1989) Activation of the superoxide-forming NADPH oxidase of macrophages requires two cytosolic components-one of them is also present in certain nonphagocytic cells. J Immunol 143(12):4180–4187

    CAS  PubMed  Google Scholar 

  63. Sha'ag D, Pick E (1990) Nucleotide binding properties of cytosolic components required for expression of activity of the superoxide generating NADPH oxidase. Biochim Biophys Acta 1037(3):405–412

    CAS  PubMed  Google Scholar 

  64. Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515

    CAS  PubMed  Google Scholar 

  65. Fuchs A, Dagher MC, Jouan A, Vignais PV (1994) Activation of the O2(−)-generating NADPH oxidase in a semi-recombinant cell-free system. Assessment of the function of Rac in the activation process. Eur J Biochem 226(2):587–595

    CAS  PubMed  Google Scholar 

  66. Abo A, Boyhan A, West I, Thrasher AJ, Segal AW (1992) Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67- phox, p47- phox, p21 rac 1, and cytochrome b −245. J Biol Chem 267:16767–16770

    CAS  PubMed  Google Scholar 

  67. Rotrosen D, Yeung CL, Katkin JP (1993) Production of recombinant cytochrome b558 allows reconstitution of the phagocyte NADPH oxidase solely from recombinant proteins. J Biol Chem 268:14256–14260

    CAS  PubMed  Google Scholar 

  68. Matute JD, Arias AA, Wright NAM, Wrobel I, Waterhouse CCM, Li XJ, archal CC, Stull ND, Lewis DB, Steele M, Kellner JD, Yu W, Meroueh SO, Nauseef WM, Dinauer MC (2009) A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood 114(15):3309–3315

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wientjes FB, Hsuan JJ, Totty NF, Segal AW (1993) p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J 296:557–561

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Someya A, Nagaoka I, Yamashita T (1993) Purification of the 260 kDa cytosolic complex involved in the superoxide production of guinea pig neutrophils. FEBS Lett 330:215–218

    CAS  PubMed  Google Scholar 

  71. Tsunawaki S, Mizunari H, Nagata M, Tatsuzawa O, Kuratsuji T (1994) A novel cytosolic component, p40 phox, of respiratory burst oxidase associates with p67 phox and is absent in patients with chronic granulomatous disease who lack p67 phox. Biochem Biophys Res Commun 199:1378–1387

    CAS  PubMed  Google Scholar 

  72. Ponting CP (1996) Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: Binding partners of SH3 domains. Protein Sci 5:2353–2357

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wishart M, Taylor G, Dixon J (2001) Phoxy lipids: revealing PX domains as phosphoinositide binding modules. Cell 105:817–820

    CAS  PubMed  Google Scholar 

  74. Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE, Butler PJ, Lavenir I, Perisic O, Hawkins PT, Stephens L, Williams RL (2001) The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol Cell 8(4):829–839

    CAS  PubMed  Google Scholar 

  75. Ago T, Takeya R, Hiroaki H, Kuribayashi F, Ito T, Kohda D, Sumimoto H (2001) The PX domain as a novel phosphoinositide-binding module. Biochem Biophys Res Commun 287(3):733–738

    CAS  PubMed  Google Scholar 

  76. Ellson C, Gobert-Gosse S, Anderson K, Davidson K, Erdjument-Bromage H, Tempst P, Thuring J, Cooper M, Lim ZY, Holmes A, Gaffney P, Chilvers E, Hawkins P, Stephens L (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40 phox. Nat Cell Biol 3:679–682

    CAS  PubMed  Google Scholar 

  77. Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho WW, Williams RL (2002) Binding of the PX domain of p47 phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21(19):5057–5068

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ (1989) Association of a ras-related protein with cytochrome b of human neutrophils. Nature 342:198–200

    CAS  PubMed  Google Scholar 

  79. Knoller S, Shpungin S, Pick E (1991) The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b 559. J Biol Chem 266:2795–2804

    CAS  PubMed  Google Scholar 

  80. Li Y, Yan J, De P, Chang HC, Yamauchi A, Christopherson KW 2nd, Paranavitana NC, Peng X, Kim C, Munugalavadla V, Kapur R, Chen H, Shou W, Stone JC, Kaplan MH, Dinauer MC, Durden DL, Quilliam LA (2007) Rap1a null mice have altered myeloid cell functions suggesting distinct roles for the closely related Rap1a and 1b proteins. J Immunol 179(12):8322–8331

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Paclet MH, Berthier S, Kuhn L, Garin J, Morel F (2007) Regulation of phagocyte NADPH oxidase activity: identification of two cytochrome b 558 activation states. FASEB J 21:1244–1255

    CAS  PubMed  Google Scholar 

  82. Baillet A, Hograindleur MA, El Benna J, Grichine A, Berthier S, Morel F, Paclet MH (2016) Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase. FASEB J 31(2):663–673. https://doi.org/10.1096/fj.201600720R

    Article  PubMed  Google Scholar 

  83. Dana R, Leto TL, Malech HL, Levy R (1998) Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J Biol Chem 273(1):441–445

    CAS  PubMed  Google Scholar 

  84. Li Q, Cathcart MK (1997) Selective inhibition of cytosolic phospholipase A 2 in activated human mononcytes. J Biol Chem 272(4):2404–2411

    CAS  PubMed  Google Scholar 

  85. Bae Y, Kim Y, Kim J, Lee T, Kim Y, Suh P, Ryu S (2000) Independent functioning of cytosolic phospholipase A 2 and phospholipase D 1 in Trp-Lys-Tyr-Met-Val-D-Met induced superoxide generationin human monocytes. J Immunol 164:4089–4096

    CAS  PubMed  Google Scholar 

  86. Rubin BB, Downey GP, Koh A, Degousee N, Ghomashchi F, Nallan L, Stefanski E, Harkin DW, Sun C, Smart BP, Lindsay TF, Cherepanov V, Vachon E, Kelvin D, Sadilek M, Brown GE, Yaffe MB, Plumb J, Grinstein S, Glogauer M, Gelb MH (2005) Cytosolic phospholipase A 2- α is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infect. cPLA2- α does not regulate neutrophil nadph oxidase activity. J Biol Chem 280(9):7519–7529

    CAS  PubMed  Google Scholar 

  87. Berthier S, Nguyen MVC, Baillert A, Hograindleur MA, Paclet MH, Polack B, Morel F (2012) Molecular interface of S100A8 with cytochrome b 558 and NADPH oxidase activation. PLoS One 7(7):e40277

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Berthier S, Paclet MH, Lerouge S, Roux F, Vergnaud S, Coleman AW, Morel F (2003) Changing the conformation state of cytochrome b558 initiates NADPH oxidase activation. J Biol Chem 278(28):25499–25508

    CAS  PubMed  Google Scholar 

  89. Doussiere J, Bouzidi F, Vignais PV (2002) The S100A8/A9 protein as a partner for the cytosolic factors of NADPH oxidase activation in neutrophils. Eur J Biochem 269:3246–3255

    CAS  PubMed  Google Scholar 

  90. Kerkhoff C, Nacken W, Benedyk M, Dagher MC, Sopalla C, Doussiere J (2005) The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. FASEB J 19(3):467–469

    CAS  PubMed  Google Scholar 

  91. Taylor RM, Riesselman MH, Lord CI, Gripentrog JM, Jesaitis AJ (2012) Anionic lipid-induced conformational changes in human phagocyte flavocytochrome b precede assembly and activation of the NADPH oxidase complex. Arch Biochem Biophys 52(1–2):24–31

    Google Scholar 

  92. Nauseef WM (2004) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122(4):277–291

    CAS  PubMed  Google Scholar 

  93. Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991) Neutrophil NADPH oxidase assembly. Membrane translocation of p47- phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Allen LAH, DeLeo FR, Gallois A, Toyoshima S, Suzuki K, Nauseef WM (1999) Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47 phox and p67 phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease. Blood 93:3521–3530

    CAS  PubMed  Google Scholar 

  95. Dusi S, Nadalini KA, Donini M, Zentilin L, Wientjes FB, Roos D, Giacca M, Rossi F (1998) Nicotinamide-adenine dinucleotide phosphate oxidase assembly and activation in EBV-transformed B lymphoblastoid cell lines of normal and chronic granulomatous disease patients. J Immunol 161:4968–4974

    CAS  PubMed  Google Scholar 

  96. Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PM, El-Benna J (2018) NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur J Clin Investig 48(Suppl 2):e12951. https://doi.org/10.1111/eci.12951

    Article  CAS  Google Scholar 

  97. Brechard S, Plancon S, Tschirhart EJ (2013) New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 18(6):661–676. https://doi.org/10.1089/ars.2012.4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Foubert TR, Burritt JB, Taylor RM, Jesaitis AJ (2002) Structural changes are induced in human neutrophil cytochrome b by NADPH oxidase activators, LDS, SDS, and arachidonate: intermolecular resonance energy transfer between trisulfopyrenyl-wheat germ agglutinin and cytochrome b 558. Biochim Biophys Acta 78380:1–11

    Google Scholar 

  99. Shao DM, Segal AW, Dekker LV (2003) Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 550(1–3):101–106

    CAS  PubMed  Google Scholar 

  100. Jin S, Zhou F, Katirai F, Li PL (2011) Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 15(4):1043–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Nisimoto Y, Motalebi S, Han CH, Lambeth JD (1999) The p67 phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b 558. J Biol Chem 274(33):22999–23005

    CAS  PubMed  Google Scholar 

  102. Bánfi B, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278(6):3510–3513

    PubMed  Google Scholar 

  103. Cheng G, Ritsick D, Lambeth JD (2004) Nox3 regulation by NOXO1, p47phox and p67phox. J Biol Chem 279(33):34250–34255

    CAS  PubMed  Google Scholar 

  104. Geiszt M, Lekstrom K, Witta J, Leto TL (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278(22):20006–20012

    CAS  PubMed  Google Scholar 

  105. Segal AW, Harper AM, Cross AR, Jones OT (1986) Cytochrome b-245. Methods Enzymol 132:378–394

    CAS  PubMed  Google Scholar 

  106. Murphy R, DeCoursey TE (2006) Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta 1757:996–1011

    CAS  PubMed  Google Scholar 

  107. Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann Y, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti JC, Bergstrom DE (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Moreno JC, Bikker H, Kempers MJE, Van Trotsenburg ASP, Baas F, De Vijlder JJM, Vulsma T, Ris-Stalpers C (2002) Inactivating mutations in the gene for thyroid oxidase 2 (thox2) and congenital hypothyroidism. N Engl J Med 347(2):95–102

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors have been supported by grants from the National Institutes of Health [R01- AI132335 (WMN); R01-AI16546 (WMN); UL1-TR002645 (RAC); P30-AG044271 (RAC); R01-AI020866 (RAC)] and the Veterans Health Administration [I01 BX000513 (WMN); I01-BX000117 (RAC); I01-BX003157 (RAC)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nauseef, W.M., Clark, R.A. (2019). Intersecting Stories of the Phagocyte NADPH Oxidase and Chronic Granulomatous Disease. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics