Skip to main content

Studying Cancer Heterogeneity by Single-Cell RNA Sequencing

  • Protocol
  • First Online:
Lymphoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1956))

Abstract

A major hurdle for the treatment of cancer is the incomplete understanding of its evolution through the course of its emergence, dispersal, and relapse. Genetic and epigenetic changes in combination with external cues and selective forces are the driving factors behind tumor heterogeneity. Understanding this variability within and across patients may partly explain the unpredictable outcomes of cancer treatments. Measuring the variation of gene expression levels within cells of the same tumor is a crucial part of this endeavor. Hence, the recently developed single-cell RNA-sequencing (scRNA-seq) technologies have become a valuable tool for cancer research. In practice, however, this is still challenging, especially for clinical samples. Here, we describe mcSCRB-seq (molecular crowding single-cell RNA barcoding and sequencing), a highly sensitive and powerful plate-based scRNA-seq method, which shows great capability to generate transcriptome data for cancer cells. mcSCRB-seq is not only characterized by high sensitivity due to molecular crowding and the use of unique molecular identifiers (UMIs) but also features an easy workflow and a low per-cell cost and does not require specialized equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  CAS  Google Scholar 

  2. Maley CC, Aktipis A, Graham TA et al (2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 17:605–619

    Article  CAS  Google Scholar 

  3. Wu C-I, Wang H-Y, Ling S et al (2016) The ecology and evolution of cancer: the ultra-microevolutionary process. Annu Rev Genet 50:347–369

    Article  CAS  Google Scholar 

  4. Podlaha O, Riester M, De S et al (2012) Evolution of the cancer genome. Trends Genet 28:155–163

    Article  CAS  Google Scholar 

  5. Lipinski KA, Barber LJ, Davies MN et al (2016) Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer Res 2:49–63

    Article  Google Scholar 

  6. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628

    Article  CAS  Google Scholar 

  7. Turajlic S, Xu H, Litchfield K et al (2018) Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173:595–610.e11

    Article  CAS  Google Scholar 

  8. Martincorena I, Raine KM, Gerstung M et al (2017) Universal patterns of selection in cancer and somatic tissues. Cell 171:1029–1041.e21

    Article  CAS  Google Scholar 

  9. Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to mechanism. Nature 541:331–338

    Article  CAS  Google Scholar 

  10. Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620

    Article  CAS  Google Scholar 

  11. Ziegenhain C, Vieth B, Parekh S et al (2018) Quantitative single-cell transcriptomics. Brief Funct Genomics 17:220–232

    Article  Google Scholar 

  12. Tirosh I, Izar B, Prakadan SM et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196

    Article  CAS  Google Scholar 

  13. Ebinger S, Özdemir EZ, Ziegenhain C et al (2016) Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell 30:849–862

    Article  CAS  Google Scholar 

  14. Picelli S (2017) Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 14:637–650

    Article  Google Scholar 

  15. Darnell JE Jr (1968) Ribonucleic acids from animal cells. Bacteriol Rev 32:262–290

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e4

    Article  CAS  Google Scholar 

  17. Parekh S, Ziegenhain C, Vieth B et al (2016) The impact of amplification on differential expression analyses by RNA-seq. Sci Rep 6:25533

    Article  CAS  Google Scholar 

  18. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16:133–145

    Article  CAS  Google Scholar 

  19. Vallejos CA, Risso D, Scialdone A et al (2017) Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods 14:565–571

    Article  CAS  Google Scholar 

  20. Bagnoli JW, Ziegenhain C, Janjic A, et al (2018) Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat Commun 9:2937

    Google Scholar 

  21. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214

    Article  CAS  Google Scholar 

  22. Zheng GXY, Terry JM, Belgrader P et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    Article  CAS  Google Scholar 

  23. Parekh S, Ziegenhain C, Vieth B et al (2018) zUMIs – A fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience 7

    Google Scholar 

  24. R Development Core Team (2008) R: a language and environment for statistical computing. http://www.R-project.org

  25. RStudio Team (2015) RStudio: integrated development environment for R. http://www.rstudio.com/

  26. Lun ATL, McCarthy DJ, Marioni JC (2016) A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Res 5:2122

    PubMed  PubMed Central  Google Scholar 

  27. Bacher R, Chu L-F, Leng N et al (2017) SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods 14:584–586

    Article  CAS  Google Scholar 

  28. Thomas MP, Lieberman J (2013) Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 253:237–252

    Article  Google Scholar 

  29. DeAngelis MM, Wang DG, Hawkins TL (1995) Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res 23:4742–4743

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Enard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bagnoli, J.W., Wange, L.E., Janjic, A., Enard, W. (2019). Studying Cancer Heterogeneity by Single-Cell RNA Sequencing. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 1956. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9151-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9151-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9150-1

  • Online ISBN: 978-1-4939-9151-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics