Skip to main content

In Vitro Strategy to Measure Sterol/Phosphatidylinositol-4-Phosphate Exchange Between Membranes

  • Protocol
  • First Online:
Intracellular Lipid Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1949))

  • 2403 Accesses

Abstract

Recent findings unveiled that Oxysterol-binding protein-related proteins (ORP)/Oxysterol-binding homology (Osh) proteins, which constitute a major family of lipid transfer proteins (LTPs), conserved among eukaryotes, are not all mere sterol transporters or sensors. Indeed, some of them are able to exchange sterol for phosphatidylinositol-4-phosphate (PI4P) or phosphatidylserine (PS) for PI4P between membranes and thereby to use PI4P metabolism to generate sterol or PS gradients in the cell, respectively. Here, we describe a full strategy to measure in vitro a sterol/PI4P exchange process between artificial membranes using Förster resonance energy transfer (FRET)-based assays and a standard spectrofluorometer. Such an approach can serve to better characterize the activity of known sterol/PI4P exchangers, but also to reveal whether ill-defined ORP/Osh proteins or LTPs belonging to other families have such an exchange activity. Besides, this protocol is amenable to test whether molecules can act as Orphilins, which have been found to inhibit the sterol/PI4P exchange activity of certain ORPs. Last, our strategy to measure in real-time PI4P transport using a known lipid-binding domain can serve as a basis for the design of novel in vitro protocols aiming to detect other lipid species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bigay J, Antonny B (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 23:886–895

    Article  CAS  Google Scholar 

  2. Drin G (2014) Topological regulation of lipid balance in cells. Annu Rev Biochem 83:51–77

    Article  CAS  Google Scholar 

  3. Prinz WA (2010) Lipid trafficking sans vesicles: where, why, how? Cell 143:870–874

    Article  CAS  Google Scholar 

  4. Levine T (2004) Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol 14:483–490

    Article  CAS  Google Scholar 

  5. Holthuis JC, Menon AK (2014) Lipid landscapes and pipelines in membrane homeostasis. Nature 510:48–57

    Article  CAS  Google Scholar 

  6. Dittman JS, Menon AK (2017) Speed limits for nonvesicular intracellular sterol transport. Trends Biochem Sci 42:90–97

    Article  CAS  Google Scholar 

  7. Lev S (2010) Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol 11:739–750

    Article  CAS  Google Scholar 

  8. Lev S (2012) Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb Perspect Biol 4:a013300

    Article  Google Scholar 

  9. Wong LH, Copic A, Levine TP (2017) Advances on the transfer of lipids by lipid transfer proteins. Trends Biochem Sci 42:516–530

    Article  CAS  Google Scholar 

  10. Iaea DB, Dikiy I, Kiburu I et al (2015) STARD4 membrane interactions and sterol binding. Biochemistry 54:4623–4636

    Article  CAS  Google Scholar 

  11. Wilhelm LP, Wendling C, Vedie B et al (2017) STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J 36:1412–1433

    Article  CAS  Google Scholar 

  12. Bian X, Saheki Y, De Camilli P (2018) Ca(2+) releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J 37:219–234

    Article  CAS  Google Scholar 

  13. Horenkamp FA, Valverde DP, Nunnari J et al (2018) Molecular basis for sterol transport by StART-like lipid transfer domains. EMBO J 37:e98002

    Article  Google Scholar 

  14. Jentsch JA, Kiburu I, Pandey K et al (2018) Structural basis of sterol binding and transport by a yeast StARkin domain. J Biol Chem 293:5522–5531

    Article  CAS  Google Scholar 

  15. de Saint-Jean M, Delfosse V, Douguet D et al (2011) Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biol 195:965–978

    Article  Google Scholar 

  16. Mesmin B, Bigay J, Moser von Filseck J et al (2013) A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–843

    Article  CAS  Google Scholar 

  17. Moser von Filseck J, Vanni S, Mesmin B et al (2015) A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat Commun 6:6671

    Article  Google Scholar 

  18. Chung J, Torta F, Masai K et al (2015) INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349:428–432

    Article  CAS  Google Scholar 

  19. Moser von Filseck J, Copic A, Delfosse V et al (2015) INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349:432–436

    Article  CAS  Google Scholar 

  20. Wang H, Perry JW, Lauring AS et al (2014) Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. Gastroenterology 146(1373–1385):e1371–1311

    Google Scholar 

  21. Burgett AW, Poulsen TB, Wangkanont K et al (2011) Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 7:639–647

    Article  CAS  Google Scholar 

  22. Albulescu L, Bigay J, Biswas B et al (2017) Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antivir Res 140:37–44

    Article  CAS  Google Scholar 

  23. Strating JR, van der Linden L, Albulescu L et al (2015) Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein. Cell Rep 10:600–615

    Article  CAS  Google Scholar 

  24. John K, Kubelt J, Muller P et al (2002) Rapid transbilayer movement of the fluorescent sterol dehydroergosterol in lipid membranes. Biophys J 83:1525–1534

    Article  CAS  Google Scholar 

  25. Lenoir M, Grzybek M, Majkowski M et al (2015) Structural basis of dynamic membrane recognition by trans-Golgi network specific FAPP proteins. J Mol Biol 427:966–981

    Article  CAS  Google Scholar 

  26. Lenoir M, Coskun U, Grzybek M et al (2010) Structural basis of wedging the Golgi membrane by FAPP pleckstrin homology domains. EMBO Rep 11:279–284

    Article  CAS  Google Scholar 

  27. Liu Y, Kahn RA, Prestegard JH (2014) Interaction of Fapp1 with Arf1 and PI4P at a membrane surface: an example of coincidence detection. Structure 22:421–430

    Article  Google Scholar 

  28. Ghai R, Du X, Wang H et al (2017) ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nat Commun 8:757

    Article  Google Scholar 

  29. Ejsing CS, Sampaio JL, Surendranath V et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106:2136–2141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Souade Ikhlef for careful reading. This work is funded by the French National Research Agency grant ExCHANGE (ANR-16-CE13-0006) and by the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Drin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lipp, NF., Drin, G. (2019). In Vitro Strategy to Measure Sterol/Phosphatidylinositol-4-Phosphate Exchange Between Membranes. In: Drin, G. (eds) Intracellular Lipid Transport. Methods in Molecular Biology, vol 1949. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9136-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9136-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9135-8

  • Online ISBN: 978-1-4939-9136-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics